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Abstract

We study the minimal free resolution # of a ring T =S/I where S is a positive affine semi-
group ring over a field K, and 7 is an ideal in .S generated by monomials. We will essentially use
the fact that the multigraded Betti numbers of T can be computed from the relative homology of
simplicial complexes that we shall call squarefree divisor complexes. In a sense, these simplicial
complexes represent the divisibility relations in § if one neglects the multiplicities with which
the irreducible elements appear in the representation of an element. In Section 1 we study the
dependence of the free resolution on the characteristic of K. In Section 2 we show that, up to
an equivalence in homotopy, every simplicial complex can be ‘realized’ in a normal semigroup
ring and also in a one-dimensional semigroup ring. Furthermore, we describe all the graphs
among the squarefree divisor complexes. In Section 3 we deduce assertions about certain sim-
plicial complexes of chessboard type from information about free resolutions of well-undetstood
semigroup rings. © 1997 Elsevier Science B.V.
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In this note we study the minimal free resolution # of a ring T =S/I where § is
a positive affine semigroup ring over a field K, and [ is an ideal in S generated by
monomials. We will essentially use the fact that the multigraded Betti numbers of T
can be computed from the relative homology of simplicial complexes that we shall
call squarefree divisor complexes. In a sense, these simplicial complexes represent the
divisibility relations in .S if one neglects the multiplicities with which the irreducible
elements appear in the representation of an element.
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The connection between the Betti numbers of multigraded algebras and Betti numbers
of simplicial complexes is not new; e.g., it has been applied by Hochster [10], Campillo
and Marijuan [5], and Anderson [1]. In Section 1 we will use it to study the dependence
of the free resolution on the characteristic of K.

In Section 2 we show that, up to an equivalence in homotopy, every simplicial
complex can be ‘realized’ in a normal sernigroup ring and also in a one-dimensional
semigroup ring. This result indicates that the divisibility theory of affine, even normal,
semigroups is arbitrarily complex: up to homotopy, every simplicial complex arises
from the decompositions of their elements into irreducible elements.

While the exact classification of the simplicial complexes arising as squarefree divisor
complexes is probably very difficult, we succeed in describing all the graphs among
them, and also the significantly smaller class of those graphs that appear in normal
semigroups.

In Section 3 we deduce assertions about certain simplicial complexes of chessboard
type from information about free resolutions of well-understood semigroup rings.

1. Betti numbers and characteristic

Let K be a field. A subalgebra of the polynomial ring K[Y,...,Y,] over the field
K generated by a finite number of monomials yi,...,y, is called a positive affine
semigroup ring. In the following S will always denote such a ring. The monomials
contained in S form a semigroup under multiplication, and the function deg: .# — N”
that assigns each monomial its exponent vector maps .# isomorphically onto a sub-
semigroup H of N™. Up to isomorphism, S is the semigroup algebra K[H]. We will
always assume that yi,...,y, are irreducible elements of .#, or, in other words, that
they form a minimal system of algebra generators of S.

Let £ be the simplex with vertex set {1,...,n}. For a face F of ¥ we let y¥ denote
the product of the y; with i€ F, and, given an element h€ H, we define the squarefree
divisor complex of Y" to be the simplicial complex

Ay ={FeZx: y¥ divides Y"}.

Let I be an ideal of S generated by monomials pu€.#, and set T =S/I. The free
resolution & that we will investigate is taken with respect to a representation T =
R/J where R=K[X;,...,X,] is a polynomial ring whose indeterminates are mapped
to the elements yy,..., y,. A notable special case is that in which S =K[X,....,X,]=
K[Y1,..., Y], and T is just the residue class ring of a polynomial ring modulo an ideal
generated by indeterminates.

By assigning the degree of y; to X; we make R a multigraded K-algebra with grading
group Z™, for which T is a multigraded R-module. Therefore # has a multigraded
structure; its ith free module F; decomposes into a direct sum €, R(—h)P*; hence
Tor/(K,T) = @cp K(—h)P#*. On the other hand, the minimal free resolution of K
over R is given by the Koszul complex # (X,R), and since Tor can be computed



W. Bruns, J. Herzog!Journal of Pure and Applied Algebra 122 (1997) 185-208 187

from a free resolution of either of its arguments, the graded Betti number B; can be
determined from the Koszul homology; in fact,

H{(A(X,T),) = @K(_h)ﬁlh
heH

as well. (The index A€ H denotes the degree /& multigraded component.) In the special
situation under consideration where dimg 7 <1 for all A€ H, the multigraded compo-
nents of #;(X,T) have a purely combinatorial description. In the following, € denotes
the oriented augmented chain complex, and A the (relative) simplicial homology or
cohomology.

Proposition 1.1. For hc H we set Iy = {F € A,: Y*/y € I}. Then the following hold:
(1) (X T = (€(4n, K)/ €1, K)N-1),
(2) B =dimg H;—1(Ap, [, K).

Proof. The ith free module in the Koszul complex (X)) has the multigraded decom-
position

Hi(X)= P R(—degy"),

Fel, |Fl=i

and the differentiation #;(X)— #;_,(X) is given on the component R(—deg y)—
R(—deg y¥') as the multiplication by &(F,F")y; where &(F,F')=0 if F' ¢ F and
eF,FYy=(-D1if FF'=F\{ji}, F={ji,..-»Ji}» j1 < - < ji

We obtain J;(X,S) and #;(X,I) by replacing R by S and by 1. Let us fix a degree
heH. In order to have S(—deg y*), #0 we must have » — deg y¥ €H, and this is
equivalent to saying that y7|Y". If so, then S(—deg y*), is a one-dimensional vector
space spanned by Y%/y*:

HxSw= @ K-riyh
Fedy, |Fl=i

With respect to the K-bases thus specified, the maps in #'(X,S), are the same as those
in (45, K)(—1). In fact %(A4n,K) is the complex of vector spaces generated by the
basis elements er, F€X, such that

G(dnK)= P Ker

Fedy, |Fl=i

with differentiation on the component Kep — Kep: given by the assignment ep—
&(F,F )ep:.
Similar arguments apply to S (X,/), and the exact sequence

0—A(X1)— A (X,S)—>H(X,T)—-0

then yields the isomorphism (1). Eq. (2) is an immediate consequence of (1). [
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Let ACZ be an arbitrary simplicial complex. Then we define the dual complex
of A by

A={Gezx: G¢4};

here G denotes the set-theoretic complement of G with respect to the full vertex set

{1,...,n}.
Lemma 1.2. Let I' C AC X be simplicial complexes. Then

H(A,T,K)= A" 2", A,K) = H,_»_iT, 4,K).

Proof. Let ey,...,e, be a basis of the free Z-module L=7". The exterior products
er= N;ere, FEZ, |F| = j are a basis of N L. The multiplication in AL and the “ori-
entation map’ \"L—Z, e; A-- A e, |, induce an isomorphism A’ L — (A"’ L)*
that maps er to o(F,F)(es)*. (Here * denotes the dual module and the dual basis
respectively, and ¢(F,F) is defined by the equation ez A er=0a(F,F)e; A--- Ne,)
This construction (also see [3, 1.6.10]) yields the first of our isomorphisms (for ar-

bitrary coefficients), whereas the second holds because we are taking coefficients in a
field. O

Using the previous lemma, we can easily derive the following theorem on the inde-
pendence of the f; from the characteristic of K.

Theorem 1.3. With the notation introduced, the multigraded Betti numbers B, are
independent of K for

(@)i=0,1,n—- 1,n,

(b) i=2if S=K[X,...,X,), and

(©)i=n—-21if I=0.

Proof. The assertion is obvious for i=0 and i=n. In fact, for =1 for h=0, Bor =0
for h#0, and B, is the dimension of a multigraded component of the socle of 7.
The socle is an ideal generated by the residue classes of all those y9 for which
g + degy;€.# where # is the semigroup ideal generated by the exponent vectors
of the monomials in I. Therefore the multigraded structure of the socle is independent
of K.

It is a well-known topological fact (and an easy exercise in linear algebra) that
dimg Hy(4,T,K) is independent of K for all simplicial complexes I C A. This implies
the assertion for i=1, and it also yields the case in which i=n — 1 since, by the
previous lemma, FI,,_Z(A,F,K) = I:Io(f, j,K).

In the situation of (b) one observes that 4, is the simplex on the support of h, i.e.
the set {i: h; #0}. Therefore 4(4;,K) is acyclic, and from the long exact homology
sequence we get

dimg H,(4p, T, K) = dimg Ho(I, K).
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When 7/ =0 we have I, =0 for all hc H. Therefore
dimg H,_3(4p, [}, K) = dimg H\(Z, 4, K) = dimg Hy(4p,K). [

Part (b) of the theorem was proved by Bruns and Herzog [4] by a more constructive
method, namely via a description of the third syzygy module of R/I. A similar argument
as above was given by Hibi and Terai [12]. Pardue [11] also discusses the question
as to what extent the Betti numbers are independent of K in the situation of (b).
We will see below that the theorem cannot be extended to other Betti numbers.

Corollary 1.4. All the multigraded Betti numbers of T are independent of K if
(@) n<4, or
(b)Y =5 and (i) S=R or (il) I =0.

Proof. It suffices to note that n — 1 of the fj for a given & determine the last one. In
fact, the alternating sum of the By, is the Euler characteristic of €(4, K)/€(In, K ).
o

Let II be a simplicial complex on {1,...,n} with Stanley—Reisner ring R/I(IT), R =
K[Xy,...,X,]; in this case m=n and H = N". The ideal I(IT) is generated by all the
monomials X” with suppz¢II. It has been observed in the proof of Theorem 1.3 that
4y, is the simplex on the support of A. Furthermore I, consists of all those F € 4, for
which supp(h — 27 )€ I1 where 1 = deg X7 denotes the indicator of F.

Suppose first that A is not squarefree. (We say that A€ N” is squarefree if all its
entries A; are 0 or 1.) We pick j such that #; >2, and let ' be any element of N" such
that 4] = h; for all i # j and A} > h;. Then supp # =supp 4’ and supp(h—g) = supp(h’—g)
for every squarefree g. Thus 4; = Ay and I, =1I. It follows that the pair (4, [}) ap-
pears in infinitely many multigraded components of (X, R/I(II)}). Since only finitely
many Betti numbers are non-zero, we see that €(4,,K)/€(I},K) is acyclic. (There
are of course several other arguments showing that only squarefree shifts occur in
the minimal free resolution of R/I(IT); for example, the (not necessarily minimal)
Taylor resolution has such shifts; see [4] for a more general result on squarefree
shifts.)

Next let s be a squarefree. Set W =supph, and let [Ty ={Fell: FCW} be the
restriction of II to the vertex set W. We have F T, if and only if W\F&IIy, so
that Iy = ITy, where tilde denotes the dual complex with respect to the simplex A4, on
the vertex set W. In view of the duality of Lemma 1.2 we then obtain

Corollary 1.5 (Hochster [10]). If the multigraded Betti number B, of the Stanley—
Reisner ring R/I(I1) of the simplicial complex Il is non-zero, then h is squarefree,
and

Bin=dimg Hjyi_i_\(I1w,K), W =supph.
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Example 1.6. It has been noticed several times in the literature that the minimal tri-
angulation IT

U, 2}

A
N

of the real projective plane RP? is a counter-example to the independence of the
Betti numbers (and the Cohen—Macaulay property) from K. Its Stanley—Reisner ring
is the residue class ring of K[X),...,Xs] modulo the ideal I(IT) generated by the 10
monomials of degree 3 representing the minimal non-faces of /1. Since

Us

0 if charK #2,

dimg H1(I1,K) = dimg H>(I1,K) = { 1 if charK =2,

the Betti numbers 3 (i,.,1y and B4 1,1y depend on K (use Corollary 1.5).

Remark 1.7. One can extend the previous results to an arbitrary affine semigroup ring
S = K[H] for which the invertible elements of H may form a non-zero group Hy =2
Z*. Then S(—h) and S(—h — hy) are isomorphic as multigraded modules for all Ac H
and hy € Hy so that the multigraded Betti numbers must be labelled by residue classes
modulo Hy if uniqueness of the shifts is desired. This fact is however compensated by
the equality of 4, and Apyp,.

Let m be the ideal generated by the non-invertible monomials. Then m is a prime
ideal and §/m = K[Hy]. The polynomial ring R must be replaced by K [Ulil, e Upil,
Xj,...,X,]; it is mapped onto S by sending Uj,..., U, to a basis of the group of invert-
ible monomials and X,...,X, to a minimal monomial system of generators of m. In
equation (1) of Proposition 1.1, X is to be replaced by K [UllLl, . Upil], whereas equa-
tion (2) remains valid since the extension from K to K [Ulil, ces Upil] is faithfully flat.

Remark 1.8. Let m be the maximal ideal of T generated by the monomials # 1, and
n the maximal ideal of R generated by the indeterminates. Then % is a minimal
free resolution of Ty, over R,. Thus it follows from the Auslander-Buchsbaum for-
mula and Theorem 1.3 that the inequality depth T}, > is valid or otherwise indepen-
dently of K for i =0,1,2 and, if I =0, for i =3. This also holds for the corresponding
Serre property (S;) which requires that depth 7, > min(i,dim 7;) for all prime ideals
p&ESpecT.
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Let g be the ideal generated by the monomials € p. Then q is a prime ideal, and

dim 7, =dim T, + dim R,/qR,,

depth T, = depth T, + dim R,/qR;.

(See [8, 1.2.2 and 1.2.4]. In [3, Section 1.5], we treat the case in which Z is the
grading group; the general case can be proved by induction on the rank of the grading
group.) Thus it suffices to consider 7,. This ring is of the form (4/a), where 4 is an
affine semigroup ring (in the sense of Remark 1.7), a is generated by monomials, and
t is the prime ideal generated by all non-invertible monomials. In view of Remark 1.7
we may therefore argue with depth again.

Remark 1.9. An analysis similar to that in Proposition 1.1 can be applied to the graded

local cohomology of T. For a face F of the simplex X on {1,...,n} let Tr denote the

ring of fractions with respect to the multiplicative system generated by the elements

v, 1 €F. We define a complex & to be

Z 00— b B, U= @D T
FEZ,|F|=t

the differentiation d* is given on the component Tr — Tz by &(F,F')-nat if F' CF,
and 0 otherwise.

Since H:(T) = H'(Z) (see [3, 3.5.6] for the local version of this isomorphism),
the multigraded components of H% (T') can also be expressed by simplicial data. Given
a degree g Z™, we set

Q,={F: (Sr);=0} and O,=Q,U{FeZX:Ir#Sr}.
Then €, and &, are simplicial complexes, and
H(T), =H"1(6,,2,,K).

It follows by similar arguments as above that the ‘numerical structure’ of Hi(T) is
independent from K for i =0, 1,n—1,n; if ] =0, then @, = X, and one has independence
for i =2, too. Also Corollary 1.4 has an analogue for local cohomology. A further
analysis of the case in which R=S and / is generated by squarefree monomials yields
Hochster’s description of the local cohomology of Stanley—Reisner rings; see [10 or 3,
5.3.8].

Remark 1.10. Trung and Hoa [13] have shown that the triangulation of RP? above
can be ‘realized’ in the local cohomology of an affine semigroup ring. Their example
shows that Theorem 1.3(¢) cannot be extended to i =n — 3 and, simultaneously, that
the assertion of the previous remark fails for i =3.
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2. The realization of simplicial complexes in semigroups

Let IT be a simplicial complex. In this section we will show that there exists a
simplicial complex IT homotopically equivalent to IT that appears as a squarefree di-
visor complex 4, in a positive affine semigroup ring R. Furthermore we will exactly
characterize those graphs (i.e. simplicial complexes of dimension at most 1) that can
be realized as squarefree divisor complexes.

We first turn to the question of realizing a simplicial complex up to homotopy.
Of course, this is just a matter of constructing a suitable semigroup; nevertheless, the
language of commutative algebra is convenient in its presentation. In order to form I1
we choose a new vertex vp for each maximal face of I, and let I1 be the simplicial
complex generated by the faces F U {vr} of the enlarged vertex set.

Let ¥ ={1,...,n} be the vertex set of IT. Then the ideal / =/(IT) CR=K[X,,...,X,]
defining the Stanley-Reisner ring of IT is generated by the monomials X"\* where
F is extended over the maximal faces of II. (As in Section 1, 17 is the dual of II B
We consider the Rees ring Z = #;(R). It is the R-subalgebra of R[T] generated by the
elements 7X"\¥', F as above, and therefore is the semigroup ring generated over K
by these monomials and the indeterminates X;. Choose A=(1,...,1)€ N"*!; then the
monomial with exponent vector 4 in # is p=JX;...X,7T, and its decompositions into
a product of irreducible elements are obviously given by

p=X, ... X, (IX"\),  F={i,...,ix} a maximal face of II.

Evidently IT can be identified with 4 if we let vy correspond to TXV\F.

Let % be the normalization of #. Then % is a normal affine semigroup ring whose
underlying semigroup of monomials is the normalization of the semigroup generated
by the elements X; and 7X"\'. We have

o0 oo
2=PIrr ad =i,
i=0 =0

where J; is the integral closure of /. Since [ is generated by squarefree monomials
and thus an intersection of prime ideals, it is integrally closed. This implies that the
decompositions of ¢ in & are exactly those in %, and proves part (a) of the following
theorem.

Theorem 2.1. Ler IT be a simplicial complex on the vertex set {1,...,n}. Then there
exists a positive affine semigroup ring S and a monomial p € S such that the square-
free divisor complex of p is homotopically equivalent to II. Moreover, S can be
chosen to be

(a) a normal subring of K[X1,..., X T},

(b) a subring of K[T}], or

(¢) a homogeneous subring of K[T,U].
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Part (b) follows from the following proposition, which is a much more precise
assertion than needed presently. For convenience we switch to additive notation.

Proposition 2.2. Let v,ui,...,u, € N"TL. Suppose that for i=1,...,k we have

m
v= Zb,-juj, with integers b;; > 0,
J=1

and that these are the only decompositions of v into sums of the u;. Then there exist
integers d,d\,...,dy € N such that

m
d="Y byd, fori=1,. .k
i=1

and such that no other such decomposition of d exists.

Proof. Let g€ N""' g=(gq,...,gn). Then for a given a€ N we set g(a)=> . ,g:a".
Note that N**! — N, g~ g(a), is a homomorphism of semigroups. Thus fori=1,...,k
it follows that

v(a) = Z bijui(a).

j=1

This almost solves our problem. But we have to make sure that these are the only
decompositions of v(a) as sums of the u;(a).

To achieve this we choose a big enough. First we may assume that the last com-
ponent of each u; is larger than the other components of ;. In fact, if this is not the
case, then for all j we replace the u; by #; = (ujo,...,um, Zxuy) € N7 +2,

Now we choose a <N with a>v,. Suppose that v(a)= Z;.":] cu;(a) with integers
¢; > 0. Then

n

n m
via‘= E E Cilji a.

i=0 i=0 \ j=I

Assume 27:1 Cjtnj>vp. Then 37 v > (v, + 1)a”", and so Z;:O] v;at > a". This is
a contradiction since v; < v, <a for all i. We conclude that E;.":] Cjttjn < U,. Therefore

m
E cuj <cp<a
J=1

for i,...,n. Hence we see that both sums in the above equation represent the a-

adic expansion of the same integer. This implies that v; = >

=1 Citji fori=1,...,n
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In other words,

m
v= E Ciuj,
J=1

as desired. O

In order to prove Theorem 2.1(c) we first replace II by a pure simplicial complex
II" homotopically equivalent to II. (A simplicial complex is pure if all its maximal
faces have the same cardinality.) This can simply be done by adding new vertices to
those maximal faces that are too ‘small’. Thus we may assume that IT is pure. Then we
construct # as above, and the previous proposition yields a 1-dimensional ‘realization’
K[T",...,T*] of II. Since the equations resulting from the different decompositions
of 7% are homogeneous, they carry over to the K-algebra K[UT™,..., UT"].

Example 2.3. If we choose IT as the triangulation of RP? as in Example 1.6, then the
construction above yields a (normal) semigroup ring whose multigraded second Betti
numbers are not independent of K. (Since IT = IT, we can directly consider I =I(IT).)
The Rees algebra # is not normal. In fact, the element X;...XsT? is easily seen to
be in the normalization of 2, but not in £ itself. (One can show numerically that this
element generates the normalization as an Z-algebra. The construction of IT for this
example was suggested to us by Giinter Ziegler.)

The exact classification of the simplicial complexes 4, is presumably very difficult.
We have however succeeded in describing all the graphs among them. Let I’ be a
graph. Then we can pass to a homotopically equivalent graph Iy by contracting the
‘legs’ of I' into its ‘body’: we first remove the vertices of degree 1 and the edges
adjacent to them, and iterate this procedure until we have obtained a graph [ in
which all vertices have degree at least 2. We call I the body of G. (The body of a
tree is a single vertex.)

To simplify notation in what follows we will almost always identify a vertex of 4,
with the irreducible element of H to which it corresponds.

Theorem 2.4. A graph I' can be realized as the squarefree divisor complex Ay of an
element h of an affine semigroup if and only if it satisfies the following conditions:
(a) each connected component of Iy is one of the following graphs:
(i) a complete graph K(n), n>1,
(ii) a complete bipartite graph K(m,n), mn>1,
(iil) a cycle Z(n), n> 1, or
(iv) a graph of type W(n) that is formed by joining the two vertices of the
first component of a complete bipartite graph K(2,n), n>1;
(b) at most one of the connected components of Iy is of type K(n) with n>4.
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We illustrate the types of graphs appearing in the theorem:

OAEY:4

We begin by showing that each of the graphs K(n), K(m,n), Z(n), and W{n) can
be realized.

Z(5)

Proposition 2.5. Let I' be one of the graphs K(n), K(m,n), Z(n), or W(n). Then
there exists a subsemigroup H of N and an element h€ H such that I = Ay,

Moreover, if T is one of K(1), K(2), K(3), K(m,n), Z(n), and W(n), then H and
h can be chosen such that h avoids any finite number of prime divisors.

Proof. For K(n) we choose pairwise coprime numbers gqi,...,q, and set u; = ]—[j#i q;-
The element 2 =2q, ...q, has the decompositions 4 = g,u; + q;u; so that its squarefree
divisor complex indeed contains K(n), and very elementary arguments of number the-
ory show that these are the only decompositions of / in the semigroup generated by
Uly..., Uy

For K(m,n) let py,..., pn and qq,...,q, be pairwise coprime natural numbers. We
set u;=([[;4 p;,0) and v =(0, [114 91)- Again it is easy to see that the element
h=(p1... Pm>q1-..4n) of the subsemigroup of N? generated by the u; and v has
K(m,n) as its squarefree divisor complex; in fact, its decompositions are given by
h = pu; + q;v;. According to Proposition 2.2 we find a 1-dimensional realization for
the element 4’ = p; ... pm+aq ...q,,+a2(p1 ee. Pmt+4qi..-gn) in the semigroup H C N
generated by the elements

u = Hpj+a2Hpj and vfc:qul—lraqu,,

i i 1k Itk

where a is a sufficiently large natural number. It is clear that by a suitable choice of
a and py,..., p, we can avoid any given finite set of prime divisor for 4",

In order to realize W(n) we pick pairwise coprime numbers gi,92, p1,..., Pn and
r>q1g, coprime to each of pi,..., p,. The semigroup is generated by u1 =q2p1-.. Pp,
Uy=¢q1p1...-Pn, and v;=r i Pis i=1,...,n. The element to be considered is A=
(g192+7)p1 ... pr; it has the decompositions 2= q\u; + p;v; and h = qauz + p;v;. How-
ever, r belongs to the semigroup generated by ¢ and g, so that there is also a decom-
position & = ryu; +rau. Again we can avoid any finite number of prime divisors for A.
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Let us show that % has no other decompositions than those already specified. In
fact, in an equation A =su; + saup + tyv; + -+ - + t,v, each of the coefficients # must
be divisible by p;, as follows by taking residue classes modulo p;. Therefore, and
since 7 >gq1q;, at most one of the ¢ is non-zero, and necessarily f; = p; in this case. If
none of them is non-zero, then 4 is represented as a linear combination of u; and u,.
Otherwise, we get an equation q1g2 p1-.. pa = S$141 + S22, and exactly one of the s; is
non-zero, §; = g;.

The case of Z(n) is somewhat more complicated. We choose a number 130, and
set c=3A""! —(~1y"(A—1), and

u=(—1" (=AY +e¢ i=1,...,n
For h=Au; + u, we have the representations
h=Awi+wy=Aug +us =+ =Aup_y + up=3u, + (4 — Dy

so that the squarefree divisor complex of % in the semigroup H generated by uy,...,u,
indeed contains Z,. Furthermore, since 2 = (—1)" mod 4 we can avoid any finite number
of prime divisors for 4.

One easily sees that u; + u;>uw; for all i,/,k so that u,...,u, form a minimal
system of generators of H. Next note that 2= (A + 1)c. Hence A=Y au; implies
Sai(—2Y"'=0modc. Ifaq;<A—1fori=1,...,n—1 and a, <2, then it is not hard
to see that |Sa,(—4)~'|<c, whence we derive the contradiction Y a(—Ay~!=0.
Therefore we have (i) a; > 4 for some i <n — 1, or (ii) a, > 3. Since & — Au; = u; 4
we recover one of the representations above in case (i), and this is the only possibility
since ;41 is irreducible. In case (ii) we draw on the equation A —3u, = (4 — 1)u;.
Thus it remains to show that (4 — 1)u; has no other decomposition in H.

Assume that there exists a different decomposition in the case in which #n is even.
(The case of n odd is similar.) Then we have an equation

B3I = A+ =347 T+ > a1 T A+ 1)

i=2 i=2

with 0<b <1 — 1. Since 7'+ 1+ 1<(3/2)i""!, we certainly have 3 ;_, a; <2b. On
the other hand, taking residues modulo A we get 2b = 57, a;mod A. The only remain-
ing possibility is 2b=74+ Y. ,a; so that Y| ,a;<b. Note that ((—1)""'i*"! -
4+ 1)a; <0 and that all the other terms ((—1)"14~! — 1 4+ 1)a; are less than 34"72,
Therefore > _, a; <b is impossible.

Finally we observe that K(2)=K(1,1) and K(3)=Z(3), and that for K(1) we
may pick H to be the semigroup generated by an arbitrary g € N, ¢ >0, and A =mg,
m>1. O

The next lemma enables us to show that the conditions (a) and (b) of Theorem 2.4
are indeed sufficient for the realizability of a graph. To distinguish the vertices and the



W. Bruns, J. Herzog!Journal of Pure and Applied Algebra 122 (1997) 185-208 197

coefficients with which they appear in the representations of # we denote the coefficients
by capital letters in the sequel.

Lemma 2.6. (a) Suppose that A and A’ are simplicial complexes with A= A, and
A'= Ay for coprime elements h and b of subsemigroups H and H' of N. Then
hh' € WH + hH' has the disjoint union of A and A’ as its squarefree divisor complex.

(b) Let the graph T be the squarefree divisor complex of h€ H, and let u be a
vertex of I' representing an irreducible element p(u) of H. Suppose that h=Bp(u)
with B>3 or that h=Ap(v')+ Bp(u) with another vertex ' of I, A>1 and B> 2.
Then the graph I that arises from I' by the addition of a new vertex v and the edge
{u,v} can be realized as a squarefree divisor complex Ay. Moreover, h' = Cp'(u) +
Dp'(v) with C>1,D>2,

Let now I' be a graph satisfying the conditions of Theorem 2.4. Then, if I'y con-
tains a component of type K(n) with n>4, we start with its realization according to
Proposition 2.5. Then we add all the other components of Iy, noting that the condition
of Lemma 2.6 can always be satisfied. Now the body of I' is complete, and we use
Lemma 2.6(b) in order to attach its legs. (The condition of Lemma 2.6(b) is satisfied
at every vertex of the realizations constructed in the proof of Proposition 2.5 and also
satisfied at each ‘new’ vertex.)

Proof of Lemma 2.6. Part (a) becomes obvious when one takes congruences modulo
h and A

For (b) we choose a prime number Q not dividing (B—1)p(u) or Ap(u')+(B—1)p(u),
respectively. Then we set p’'(v)=(B — 1)p(u) or p’(v)=Ap') + (B — 1)p(u), and
p'(w)=Qp(w) for all the vertices w of I'. The semigroup H’ is then generated by
p'(v) and the p’(w). The element to be considered is &' = Qh.

In order to simplify the notation we write u for p’(u),v for p’(v), and more generally
w for p/(w). Note that #’ =u+ Qv so that the last condition of (b) is satisfied. Suppose
we have a representation

W= Z Aow+ Au+ A,v.
wtu

If 4,=0, such a representation corresponds to a representation of 4 with the same
coeflicients. So suppose that 4, > 0. Since Q is prime to v, 4, is divisible by Q.
Therefore 4, = Q; otherwise A,v > #’. Thus Ew#u A,w+ A,u=u, and in view of the
hypothesis on H = QH this is only possible with 4, =1, 4, =0 for w#u.

The proof of the irreducibility of the generators of H' uses similar arguments and
can be left to the reader. O

It remains to show the necessity of the conditions (a) and (b) of Theorem 2.4, the
next lemma contains the crucial argument.
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Lemma 2.7. Suppose that I =1} is connected, and is not of type Z(n) or W(n). Let
{a,b} # {b,c}, be edges of I, so that there are equations

h:Aa+Blb=B2b+Cc, A,B1,B;,C > 0.
Then By = B, and therefore Aa=Cec.

We postpone the proof of Lemma 2.7.

For the following a piece of terminology will be useful. Let I'' CI" and v a vertex
of I'". Then we say that v has constant coefficients in I'" if for all edges {v,w}eI”
and a corresponding presentation k= Vv + Ww with V, W > 0 the coefficient V' is the
same; I’ has constant coefficients if all its vertices have constant coefficients.

For example, Lemma 2.7 says that the subgraph consisting of the vertices a,b,c¢ and
the edges {a,b} and {b,c} has constant coefficients. This holds though, in general,
the coefficients 4, By, B;,C are not unique a priori. Suppose for example that we have
another presentation 4 =B, + C’c; then B} =B, by the lemma, and hence B} = B,. This
implies C' = C. Thus Proposition 2.7 implies that the coefficients are unique.

We now show that the conditions (a) and (b) of Theorem 2.4 are necessary. So,
let C be a connected component of I. Then C is the restriction of I' to vert(C).
Restricting the semigroup to the subsemigroup generated by the irreducible elements
represented by vert(C) we may assume in the following that C = I', in other words,
I' = Iy and is connected. (There is nothing to show if C is a tree.) Suppose that I is
not of type Z(n) or W(n). Then we must show I is of type K(n) or K(m,n). Define the

equivalence relation ~ on vert(I") by setting v ~ w if there 1s a path v=uvp,...,0, =w
in I with n even. Obviously vert(I") decomposes into at most 2 classes modulo ~.
It follows from Lemma 2.7, that I” has constant coefficients. Therefore, if vy,...,v,

are the vertices of I' with coefficients V,...,V,, then Vv; = V;u; whenever v; ~ v;.
Hence we either have a single chain of equations

Nui=hon=--- =Wy,
or two such chains
V;IU“—-—"": i, Ui, and Vj,vj,=~~=V}lv,~,, V;‘U,‘I‘f'LV}IUjI.

In the first case I' X K(w), and in the second I’ 2 K(s,?) as was to be shown. The
element # € H with I'=4j is 2Viv; = Viv; + Vjv; in the first and ¥, v;, + Vj v;, in the
second case.

The last observation implies the necessity of Theorem 2.4(b). In fact, if I =4,
contains two subgraphs I'" and I'” of type K(m) and K(n) respectively, m,n >4, then
h=2Vv=2Ww where vevert(I""), wevert(I'”), and ¥ and W are the coefficients
of v and w. It follows that A= Vv + Ww so that the edge {v,w} belongs to I'. This
concludes the proof of Theorem 2.4.

The next lemma contains the elementary observation that is the key to the classifi-
cation of graphs realizable as squarefree divisor complexes.
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Lemma 2.8. Suppose that I' = A, is a graph containing the edges {a, b}, {b,c}, {c,d}
where a,b,c are pairwise different, but a=d is not excluded, and

h=Aa+ B\b=Bb+ Chc=Csc +Dd with B; > B,.
If a#d, then C; > Cs, and if a=d, then Cy > C;.

Proof. We have Coc=Aa+ (B —B1)b. If C; < 3, then h=A4a+ (B —B)b+(C3 —
Cy)e+ Dd. Now, if a#d, then {a,b,d} € A, in contradiction to the fact that A, is a
graph, and if a=d we get {a,b,c} €4y, unless C; =C;. O

Let vy,...,v, be the vertices of a subgraph C' = Z(n) of I'. Then we say that C is an
n-cycle in G, and a path P joining two different vertices v; and v, is called a diagonal
of C if P and C have no common edge.

Lemma 2.9. Let I' = Ay be a graph, and C an n-cycle in G with a diagonal D. (a) If
n>4, then C has constant coefficients, and (b) if n>5, then C U D has consiant
coefficients.

Proof. Let 4 and w be the vertices of C joined by the diagonal. If ¥ and w are
neighbours on C, then we exchange the role of the edge {u,w} and the diagonal.
Since in this case D contains a vertex different from u and w, we may assume that
there is a vertex different from « and w on each of the arcs of C joining u and w.
(Since the length of the cycle increases under this operation, the hypothesis on » has
even been improved.)

Assume C does not have constant coefficients. Then the inequality at any vertex
propagates around the cycle according to Lemma 2.8:

v

Suppose first that » > 5. Then we may assume that there is a further vertex between
v and w. For a walk from v to ¢ we then have two choices: either counterclockwise
along the cycle, or via the diagonal to u and then clockwise along the cycle. The
second choice in conjunction with Lemma 2.8 yields the clockwise inequality > at ¢,
and thus a contradiction.

If n=4, then we similarly obtain a contradiction if the diagonal contains a vertex
other than u,w. Thus there remains only the case in which the diagram above shows
exactly all the vertices and edges of CUD. For the following discussion and the proofs
of the next lemmas the following symbols will be handy. Let {a,b} and {b,c} be edges
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of I'. Then we write

a(h,>)c if h=Aa+ Bib=B:b+ Cc implies By > By, and
[a(b, >)c] if h=Aa+ Bib=Byb+ Cc with By > B; is possible.

(The distinction between a(b, >)c and [a(b, >)c] is necessary since the coefficients
are not necessarily unique a priori; furthermore, in each situation, a(b, >)c must be
understood relative to the choices made beforehand.)

With the notation just introduced, our assumption is [w(f, >)u]. According to
Lemma 2.8 we have #(u, >),w and v(w,>)u, and thus > is excluded for each of
them. Hence t(u,=),w and v(w,=)u, and therefore {#,v}€I". Observe that w(u, >),v,
whence by Lemma 2.8 we consecutively obtain u(v, >)t, v(f, >)w, and ¢(w, >)u. On
the other hand, v(w, =)u and v(w, >)t, which altogether is an impossible constellation.

For (b) we note that each edge of CUUD now lies on an m-cycle, m >4, with a
diagonal, and we apply part (a) to each of these cycles. (Note that the latter does not
apply to a 4-cycle with a diagonal consisting of a single edge as demonstrated by the
graphs W(n).) O

We need a similar statement in the situation where two cycles are joined by a straight
line.

Lemma 2.10. Suppose that I' = Ay, contains a subgraph X according to the following
figure (in the following such a graph is called a double loop):

(We require that m,n >3, but allow the cases w=0 or even a =by.) Then X has
constant coefficients.

Proof. Suppose that the assertion does not hold. Then it follows from Lemma 2.8 that
it does not even hold in one of the cycles C;, say, C;. Now, if m > 3, then the inequality
propagates over Cj, and also into the cycle C, clockwise as well as counterclockwise.
Regardless of whether n=3 or n > 3, this yields a contradiction.

Thus we are left with the case m=3. If we assume that [a3(az, >)ai] or
[a2(a3, >)a1], then we obtain the same contradiction as before. Thus, and by symmetry,
we may assume that [a1(as3, >)a2] and a)(az, >)as. Then a(a2,=)az by Lemma 2.8.

The two cases in which a; # b; and @; = b; respectively are slightly different. We
treat the second, leaving the first to the reader.

Note that [b,(a), >)az] is impossible since it would contradict a;(az, =)as.
If [bu(@1,=)az], then I' also contains the edge {bs,ar}. In that case the edges {a,a3}
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and {a3,a2} lie on a 4-cycle with the diagonal {ay,a,} so that a|(a3,=),a; by Lemma
2.9, and this contradicts our initial assumption.

Thus it remains to discuss the case az(a;, >)by. Then, if n > 4, this inequality travels
along C; and back into C, where we obtain contradictory inequalities. So we are left
with the following situation (note that [b3(b2, >)a;] is incompatible with a;(ay,=),a3):

The equalities at a, and b, force the equality a,(a;,=)b, so that {a3,b,}, {az, b3} €T
Lemma 2.9 then yields the final contradiction. [

Now Lemma 2.7 follows from the Lemmata 2.9 and 2.10 and the next, purely graph
theoretic argument.

Proposition 2.11. Suppose that I' =T} is a connected graph that is neither of type
Z(n) nor W(n). Suppose that {a,b} # {b,c} are edges of I'. Then {a,b} and {b,c}
are contained in a subgraph that is
(i) an n-cycle, n > 4 with a diagonal, or
(il) the union of an n-cycle, n > 5, and a diagonal thereof, or
(iii) a double loop.

Proof. For a vertex v of I' we denote by N(v) the set of neighbours of v.

Our first observation is that every cycle C contained in I" has a diagonal or is one
of the cycles of a double loop. In fact, since I' is not a cycle, there exists a vertex
w outside C, and we choose a shortest path connecting w with one of the vertices
v of C. Then we walk from v to w along the path choosen, and continue our walk
without ever turning back at any vertex (such a walk is interesting). This is possible
since I'=I, contains no blind alley. If our walk reaches C before it intersects itself,
then C has a diagonal. Otherwise we have found a double loop with C as one of its
cycles. We now distinguish several cases.

(i) There exists vertices z€ N(a), z # b,c, and d € N(¢), d # a,b (but possibly
z=d):

: ¢ b ¢ d

. -®

We then start an interesting walk from ¢ via b and a to z and beyond, and simultane-
ously an interesting walk from a to d and beyond. In whatever way these two walks
intersect each other or themselves, we always obtain the desired conclusion. (If we
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have formed a single cycle, then we use the previous observation; note that this cycle
has at least 4 vertices.)

By symmetry we may from now on assume that N(c)={a, b}.

(ii) There exists z € N(a), z # b, ¢, and there exists y € N(z), ¥ # a,b. By a similar
argument as in case (i) we obtain that {a,b} and {b,c} are contained in a double loop
or in the union of an n-cycle, n > 5, with a diagonal. (Note that y #c.)

(iii) There exists z€N(a), z#b,c, but N(z) = {a,b} for all ze N(a). If further
N(w)={a,b} for all we N(b), then I' = W (m) for some m, a case we have excluded
by hypothesis on I'. Thus there exists weN(b), N(w)# {a,b}.

z

We then arrive at the same conclusion as in case (ii).
(iv) N(a)={b,c}. Since I' #Z(3),b has a further neighbour w #a,c, and {a,b}
and {b,c} are contained in a double loop. O

We now illustrate the difference between the divisibility theory of an arbitrary affine
semigroup and that of a normal one by describing the graphs that can be realized in
normal semigroups.

Theorem 2.12. Suppose that H is a normal affine semigroup, and that I' = Ay, is a
graph for some he H. Let n+ 1 be the number of connected components of I'. Then
n of these are isomorphic to e—e, and the last is one of o, e—e, or —e—s.
Conversely, each such graph can be realized in a normal semigroup.

We first show that all the graphs listed can indeed be realized. Since we want to
argue ring-theoretically we use multiplicative notation. In each of the following cases
consider the semigroup generated by the elements given, subject to the relations

(1) X\p1 = =Xnyn =120,

(i) X1V = 2 = XpYn = Xnp 1 Vb1

(iii) XIVI= - =XpyVp =uv? =vw,

It is not hard to see that these relations in each case define a complete intersec-

tion R. Furthermore one checks that Serre’s condition (R;) is satisfied. Observe R is
graded (choose degx; = deg y; = degz=3 and degu = degv= degw =2). Altogether



W. Bruns, J. Herzog!Journal of Pure and Applied Algebra 122 (1997) 185-208 203

it follows that R is a normal domain. Since it is defined by binomial equations, it is a
semigroup ring; see [6]. In each case A is the element represented by a single term in
the corresponding equation.

For the proof of the necessity the following lemma is crucial. We again switch to
additive notation.

Lemma 2.13. Let H be a normal semigroup, h € H, and suppose that I' = A4y is a
graph. Let T contain the edges {a,b} # {b,c}, so that there are equations

h=Aa+Bb=Bb+ Cc, A,B1,B;,C > 0.
Then B =B+ 1and C=1,0r Bi=B,+ 1 and A=1.

Proof. Normality of A implies rank (Na + Nc¢) =2, so that B; = B, is impossible. We
assume that B, < B; and must show that the first alternative applies. Set B=5B, — B.
Then Ada=Bb+ Cec.

Let us first assume that B > 4. Then we have A(a—b) = (B—A)b+ Cc € H. Since
H is normal, a — b€ H, and the irreducibility of a implies the contradiction a=b.

It follows that 4 > B, and similarly we have 4 > C; set D =max(B,C). Then

(A—D)a+(D—B)b+(D—c)e=D(b+c—a)cH

sothat b+c€a+H. Let g=b+c—a.

If B>2 and C>2, then h=(B— 1)b+(C — 1)c+a+g, whence {a,b,c} €4, and
that is excluded by our hypothesis.

Next assume B> 2 and C =1, that is, Ae=Bb+c. Since h=(B—1)b+a+g, only
the irreducible elements ¢ and b can appear in a decomposition of g: g=Xa + Yb.
If Y > 0, then the impossible equation ¢ =(X + 1)a + (¥ — 1)b follows. Thus ¥ =0,
g =Xa, and

b+c=(X+ 1a, Bb+c=Aa.
Since rank Na + Nb+ Ne¢ =2, we obtain B =1, and thus a contradiction. Similarly one

sees that B=1, C > 2 is impossible. 0

Lemma 2.14. Let ' be as in Lemma 2.13. Then I' does not contain one of the
following subgraphs:

)
(W

V@3): Z(3): LBy & __b

a d c a c

Proof. Suppose I' contains ¥(3). Then h = Aa+Dyd = Bb+D,d = Cc+Dsd where Dy,
D5, D are pairwise distinct. We may assume Dy < D, < Ds. According to Lemma 2.13
we have D, =D, — 1, D, =D; — 1, and D, = D3 — 1, and this is obviously impossible.
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Assume that I" contains Z(3). By symmetry, and in view of Lemma 2.13, we then
have equations & =2a+ b=2b+c=2c+a. Then rank (Na+ Nb+ Nc)=1, and again
we have a contradiction.

If I' contains L(3), then one has equations A=Aa+ B1h=Bb+ Cyc=Csc+Dd. If
B > By, then C; > (5 in view of Lemma 2.8. By symmetry we may therefore assume
By <By. Then B, =B+ 1, Co=1, C3=C, + 1==2, and D=1. (This follows from
Lemma 2.13.) Thus

h=Aa+Bb=B+1)b+c=2c+d.
This yields
Bi+Dda=B1+ Db+ (B + e=(B, +2)c+d.

A similar discussion as in the proof of Lemma 2.13 implies that c+d € a + H. Then
h=c+a+g with g€ H, and I contains the edge {a,c}. Since I' does not contain
Z(3), as just seen, we have derived a final contradiction. [

It is now clear that A4, can only have connected components as described in
Theorem 2.12. We leave it to the leader to show that at most one component can
be of a type different from e—se. (The argument is similar as that used in the proof
of Lemma 2.13.)

3. The vanishing of homology of squarefree divisor complexes

In this concluding section we show that the reduced simplicial homology of a square-
free divisor complex 4; of a normal semigroup vanishes up to an index which can
be expressed in terms of 4 and the semigroup. We apply this result to some specific
examples which arise from Segre product constructions. Of particular interest will be
the so-called chessboard complexes which occur in this context. We are grateful to
Giunter Ziegler for providing us with information about the literature on chessboard
complexes.

Let H be a semigroup, § =K[H] the semigroup ring, # the minimal multigraded
free resolution of S with respect to the minimal representation S =R/I. As observed
in Section 1, % is multigraded: its ith free module F; decomposes into a direct sum
Dicn R(—h)P» with By = dimg H;_1(4,). Here and in the following we always take
coefficients in K, unless indicated otherwise.

We now assume that A is normal, and denote by relint H# the relative interior of H.
We will quote several results about Z-graded canonical modules from [3]. These state-
ments can be carried over accordingly to the multigraded case.

By a theorem of Hochster (see [3, Theorem 6.3.5(a)]), the semigroup ring S is
Cohen—Macaulay, and by a theorem of Danilov and Stanley (see [3, Theorem 6.3.5(b)]),
the ideal J is generated by the elements Y”, 4 € relint H, is the multigraded canonical
module ms of S. On the other hand (see |3, Proposition 3.6.12]), the canonical module
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can also be computed in terms of . Indeed, suppose H is generated by the irreducible
elements 4y,...,4,, and that d =dim S. Set p=n—d; then F), is last non-vanishing free
module in the resolution, and ws is the cokernel of F,’ | — F,’ (where NV denotes
the multigraded wg-dual of the multigraded R-module N). Hence if

t
Fp = D R(—hy),
=1

then, since wp = R(——Z;leh ), J is generated by the elements
Yomhh =1,

In the next proposition we write H additively, and introduce some more notation:
we denote by H-.p the set of all non-zero elements of A, and for any two subsets 4
and B of H we set A+ B = {a+b: ac A, be B}. Furthermore, we write i4 for the
set A+ ---+ A, where we add i copies of 4.

Proposition 3.1. With the notation and hypotheses introduced we have

H_1(4)=0 if Y h; ¢ h+relintH + (p — i)Hso.
j=1

In particular, if q< p is the largest integer such that Z;':lhj &h + relint H +
(p — q)H-q, then H_(Ay)= for all i < q.

Proof. Suppose S # 0. By our assumption S is Cohen-Macaulay, so that the defining
ideal of § is perfect. In this situation one has: if f; # 0, then there exists g; € A+ Hxg
such that f;;14 # 0. In fact otherwise, the matrix ¢ defining the differential Fy) — F;
would have a zero row. Thus in the R-dual of & there would appear a matrix with a
zero column, which is a contradiction, since #" is a minimal free resolution of wg.

By induction on the length of the resolution we now see that there exists an inte-
ger s, 1 <s < t, such that hp, € h+ (p — i)H 0. Thus, since Z;':lhj ~ hps € relint H,
we see that Z;’zlhj € h+relint H + (p — i)H - ¢, a contradiction. []

If § is Gorenstein, then ws is a cyclic module, and hence relint H = g+ H. Therefore
we obtain

Corollary 3.2. Suppose S = K[H] is Gorenstein, and relint H = g + H. Then for all
i < p one has,

Bioi(4)=0 if Y hj—g@h+(p—i+1DHso

=1
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and moreover

Hp(4) =0 ifh#)Y hi—g

J=1

In particular, Ay is acyclic, if Z;zlhj —g¢&h+H.

Proof. We only need to explain why in the above statement we can write (p—i+1)H~¢
instead of (p — i)H-¢ as in Proposition 3.1. The reason is that the resolution of
a Gorenstein complex is self-dual, whick in turn implies that the last shift in the
resolution differs from the shifts in £, by elements in 2H,,. [

In the proof of Corollary 3.2 we used that the resolution of a Gorenstein ring is
self-dual. This implies in particular that F, is cyclic with shift, / = Z;:JZ ; — g, and
that B, = B,—; s—» for all i and h. Hence

Corollary 3.3. Suppose S =K[H] is Gorenstein, and relint H =g+ H. Set f = Z;':]
h; — g; then

Hi—1(4n) = Hpim1(Ap—p)

for all i and h.

We now want to apply Proposition 3.1 and Corollary 3.2 to some specific examples.
To begin with we note that certain chessboard complexes may be realized as squarefree
divisor complexes. Recall that the collection of all admissible rook configurations on a
general n x n chessboard is called a chessboard complex, and is denoted by 4,,. An
admissible rook configuration is any non-taking placement of rooks.

For more information about the history and significance of chessboard complexes in
combinatorics we refer the reader to [2].

For the realization of these complexes we fix a field X, and consider the semi-
group H, , generated by all monomials y; = ¥;Z; in K[Y1,..., Y., Z1,...,Z,). Let y =
[T, Y [1/2,Z); then y € H,n and 4y = Ann.

This example can be extended in many directions, observing that K[H, ,] is the Segre
product 4 * B of two polynomial rings 4 and B. More generally, we will consider the
Segre product of two normal homogeneous semigroup rings. We call a semigroup
H C N™ homogeneous if there is a constant ¢ =c(H) such that |h| =3 h;=c for all
irreducible elements & = (h,...,h,) of H. If this is the case, then the absolute value
|| of each element of H is a multiple of ¢, and K[H] has the structure of a ho-
mogeneous K-algebra: K[H] :631‘20(@“4:1'6 Kh). Thus for y=Y*€K[H] one sets
deg y = |h|/c.

Applying the results [7, Theorem 4.2.3] of Goto and Watanabe to homogeneous
semigroup rings, we obtain
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Proposition 3.4. Let H; C N" and H, C N" be two normal homogeneous semi-groups
with constants ¢; = c(Hy) and c; =c(H,). Let H = H\ x H, C N™" be the semigroup
generated by the elements

{(h, ) by € H;, |l =¢, i=1,2}.

Then
(a) H is a normal homogeneous semigroup, and there is an isomorphism of graded
k-algebras

K[H ] *K[H] = K[H]
(b) relint H = {(h1, ) b € relint H;, |hi| = joi, i =1,2, j=1,2,..}.

It is often more convenient to express Proposition 3.4 in terms of the associated rings
and modules. Say K[H;]CK][Yi,...,Yy,] is generated by the monomials yi,..., ¥,
of degree c|, and K[H,]C K[Z,,...,Z,] by the monomials z,...,z,, of degree c;.
Then K[H,] * K{H,]CK[Y1,...,Ym, Z1,...,Zy] is generated by the monomials y;z;,
i=1,...,r, j=1,...,r. Moreover Proposition 3.4(b) says that cwx(x is generated by
the set of monomials .# = {yz: y € wgm,}, z € Wy, degy = degz}. A minimal
set of generators of K[H] is given by all monomials yz € .# for which either y is a
minimal generator of wgu,), or z is a minimal generator of wgx,).

Remark 3.5. Chesshoard complexes with multiplicities. We let H,, , = N™ « N”, and
choose h€ N™™ h=(ay,...,am,b1,...,by) with > "a; =13 b;. Then h€ Hp,», and 4
may be identified with rook configurations on an m x n-chessboard where for i =

l,...,mand j=1,...,n it is allowed to place at most a; rooks on the ith row and b;
rooks on the jth column of the chessboard.
Let us compute relint H,, ,: obviously one has relint N = (1,...,1) + N” for any

r > 1. Thus, if we assume that m < n, then wgy, ) is generated by the monomials
Y°Z,,...,Z, with |c| = n, and all components of ¢ positive. In other words, relint H,, ,
is generated by the elements (ci,...,Cm, 1,...,1) € N™*" with ¢; > 0 and 21’1101 =n.
Thus Proposition 3.1 implies that 4, is acyclic if a; > n for some i, b; > m for some
j,or 3" a;>mn—n.
Remark 3.6. Higher dimensional chessboard complexes. We let Hy, , = N" *x--- %
N™ with ny < --- < n,, and choose & = (@11,..,@1nyr-+-s++sArls-- > @py, ) 0 NOTHAr
where the sums Z,.";laﬁ are independent of j. Then A€ H,, _, , and 4, may be iden-
tified with the chessboard complex which is the collection of rook placements on the
r-dimensional chessboard of shape n; x n; x -+ x n, where at most a;; rooks belong
to the (r — 1)-dimensional hyperplane orthogonal to the ith axis of the chessboard, and
intersecting this axis in a distance of j units from the origin.

We leave it to the reader to formulate a general condition for the acyclicity
of A4;, and consider here only the special case that n; = --- = n, = n. We have

...............
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we may compute its dimension (assuming »>2) according to [7, Proposition 4.2.4],
and obtain dimK[H, ,]=rn — (r — 1). Hence referring to the notation of Corol-
lary 3.2 we get p=n" —rn+ (r — 1), and it follows that H;_,(4,)=0 for all i such
that

=1, D) Eh+( —rn+(r—1)—i+ 1)Hso,

where H =H, _, This condition is satisfied if the absolute value ra(n™"! — 1) of
(n"~!—1,...,n""1 — 1) is less than the absolute value of any element of 4 + (n" —
ro+(r — 1) — i+ 1)H.y. One easily checks that this is the case if

i< %Ztas,—(r—l)(n—l).

For example, if =2 and ay =a for all » and s, then ﬁi_l(A;,)zo for all i < (a —
Dn+ 1.

Some non-vanishing simplicial homology groups of chessboard complexes have been
computed. It has been shown [2, Proposition 2.3] that H,(4s, L) 2 LIy DL B L.
This implies that f3(K[Hs s]) depends on the characteristic. Note that K{Hs s] is the
determinantal ring defined by the 2-minors of a 5 x 5 matrix. Thus this approach yields
a different proof of a well-known result of Hashimoto [9] who first showed that the
resolution of determinantal rings may depend on the characteristic of the base field.
Anderson [1] showed a similar result for symmetric matrices directly by a machine
computation of the homology of a squarefree divisor complex.
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