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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 

WINFRIED BRUNS TAKAWKI HIBI 

FB Naturwissenschaften Mathematik Department of Mathematics 

Universitat Osnabriick Faculty of Science 
Standort Vechta Hokkaido University 

49377 Vechta, Germany Sapporo 060, Japan 

Introduction 

In this paper we continue our study, started in [3], of simplicial complexes A  
whose Stanley-Reisner rings have pure minimal free resolutions. (A complex of 
free modules over a polynomial ring is calledpure if its maps can be represented by 
matrices p, all of whose non-zero entries have the same degree, which may depend 
on i). While it might be too ambitious to strive for their complete combinatorial 
classification, it seems to be a reasonable project to find the numerical invariants 
of all pure free resolutions that arise from simplicia1 complexes, at least in the 
presence of the Cohen-Macaulay property. 

A very satisfactory case is that in which A  is the maximal complex supported 
by its 1 -skeleton A 1, or, equivalently, in which the defining ideal I* of the Stanley- 
Reisner ring K [ A ]  is generated by monomials of degree 2 ( K  is an arbitrary field). 
Froberg [5] has shown that K [ A ]  has a 2-linear resolution if and only if A l  is a 
chordal graph, and we complement his result by proving that in all the other cases 
with a pure resolution A  is a multi-cone over a I -dimensional cycle. (A graph r 
on the vertex set V is chordal if #W = 3 for all W C V such that rw is a cycle.) 
In particular the 1-dimensional simplicial complexes with pure free resolutions 
are completely classified, as well as those arising from a partially ordered set. 

We next address the case of dimension 2. The main difficult case is that in 
which Id is generated by degree 3 monomials and A is doubly Cohen-Macaulay. 
For each number n of vertices there exists at most one numerical type of resolution, 
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1202 BRUNS AND HIBI 

and we succeed in constructing corresponding simplicial complexes for n = 
0  mod 2 and n = 7. A computer-aided exhaustive search for n = 9 has shown 
that no such complex exists, and we conjecture that the non-existence persists for 
all n - 1 mod 2, n 2 9. 

Taylor [ l  I ]  constructed a free resolution for an arbitrary ideal generated by 
monomials. It is not very difficult to find all the ideals IA whose Taylor resolution 
is pure. (Then IA has also a pure minimal free resolution.) Unfortunately one 
obtains only few Cohen-Macaulay rings this way. 

In the final section of the paper we determine all ideals IA that are generated 
by monomials of degree m and have a minimal pure free resolution in which each 
non-zero entry of the syzygy matrix of IA has degree m- 1. For example, if m = 3, 
then the monomials generating IA can be represented by a subconfiguration of 
the Fano plane. 

1 Simplicia1 complexes and free resolutions 

We assume that the reader is familiar with the standardcombinatorial and algebraic 
terminology developed in, e.g., Bruns and Herzog [ 2 ] ,  Hibi [7], or Stanley [ lo] .  
Therefore we only introduce some notation and recall a few basic facts about 
simplicial complexes and free resolutions. Throughout this paper A  denotes a 
simplicial complex on the vertex set V;  its number of vertices is n, and it has 
dimension d - 1. For subsets U ,  W of V the simplicial complex Aw consists of 
all those faces of A that are contained in W, whereas A \ U is formed by all faces 
that are disjoint to U .  If W = {w) ,  then we write A, and A \ w for A{,) and 
A  \ {w) respectively. 

Let K be a field, and S = K I X 1 ,  . . . , X,] be apolynomial ring over K whose 
indeterminates correspond bijectively to the vertices of A.  The Stanley-Reisner 
ring K [ A ]  of A  with coefficients in K  is the residue class ring S/IA whose defining 
ideal is generated by those squarefree monomials in X 1 ,  . . . , X ,  that represent 
non-faces of A. Since IA is generated by homogeneous polynomials, K [ A ]  
carries a natural grading, and, like every finitely generated graded S-module, it 
has a minimal graded free resolution 

'PP 'P2 PI 
( l ) ~ . :  O +  $ S ( - ~ ) ~ P J  -t . . .  -+ $ S ( - ~ ) ~ ' J  -+ S -+ K [ A ]  -+ 0; 

J I 

here S(- j )  is a free S-module of rank I whose base element has degree j ,  and the 
maps (o, are degree-preserving. In particular each entry of (a matrix representing) 
(pi is a homogeneous polynomial; since the resolution is minimal, anon-zero entry 
has positive degree. (Because IA is generated by monomials, K [ A ]  has even a 
multi-graded minimal resolution, but we will not use the multi-graded structure 
directly.) We consider the image of (o, to be generated by its rows. 
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1203 

The number p is the projective dimension of K [A]. One always has n - d 5 
p 5 n, and if n - d = p, then KIA] is Cohen-Macaulay. This holds true, if and 
only the dual complex Homs(F., S(-n)) is also acyclic, and if so, then it is the 
minimal graded free resolution of the graded canonical module of K [A]. 

The Pi, are called the graded Betti numbers of K [A], and their sums 

are the Betti numbers of K [A]. Hochster [8, Theorem (5. I)]  gave a combinatorial 
formula for the (multi-)graded Betti numbers of A: 

A pure free resolution is distinguished by the fact that for each i all the non- 
zero entries of qi have the same degree. If it is pure, then the resolution (1) can 
be written in the form 

Its shft  type is the sequence cp, . . . , c1. Often it is however more instructive to use 
its degree type formed by the degrees cp - cp-l, . . . , c2 - C I ,  c1 of the entries of 
the maps pi. We say that the resolution is m-pure if cl  = m, and that it is m-linear 
if its degree type is 1 . . . 1 m. It is an obvious consequence of Hochster's formula 
that K[Aw] has a pure resolution for every subset W c V along with K[AJ; its 
shift type is simply a truncation of the shift type of K [A]. 

Suppose K[A] is Cohen-Macaulay with apure resolution of shift type cp, . . . , 
cl, then the Betti numbers Pi and the multiplicity e(K[A]) of K[A] can be ex- 
pressed in terms of these shifts: 

see [2,4.1.15] or the articles of Herzog and Kiihl [6] and Huneke and Miller 19 1. 
Note that e(K[A]) is the number of facets of A. Since the ,8, and e(K[A]) are 
integers, the equations (3) impose restrictions on the shifts c,. 

The Gorenstein rings among the K[A] with pure resolution are easy to de- 
scribe: K[A] is Gorenstein if and only if it is Cohen-Macaulay and its degree 
type is a palindrome. In fact, if K [ A ]  is Gorenstein, then it has a self-dual resolu- 
tion, and therefore a palindromic degree type; conversely, if the degree type is a 
palindrome, then ,8n-d = 1, and a Cohen-Macaulay ring of type 1 is Gorenstein. 
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1204 BRUNS AND HIBI 

In the following we will use some easy observations about the shifts in graded 
resolutions. For the resolution (1)  we set 

m i = m i n { j : B i j # O ]  and M i = m a x { j : B i j # 0 ]  

and call these numbers the minimal and nmximal shifts of K [ A ] .  Clearly, the 
resolution is pure if and only if mi = Mi for all i .  Hochster's formula implies 
that Mi 5 n = #V for all i .  

Proposition 1.1. One has rnl  < . . . < m p ,  and i f  K [ A ]  is Cohen-Macaulay, then 
also M1 < . . .  c M p .  

PROOF. Set k = r n , + l .  Then the row of q i + l  corresponding to any of the base 
elements of ~(-k)Pl+l.k has a non-zero entry. If the corresponding column has 
shift s ,  then mi+, = k > s 2 mi. In the Cohen-Macaulay case we apply this 
argument to the dual complex, which is a minimal graded free resolution of the 
canonical module of K [ A ]  and whose minimal shifts my are given by n - Mp-i. 

0 

Suppose that I A  is generated by monomials of the same degree g. If these are 
pairwise coprime, then they form aregular sequence; the Koszul complex resolves 
K [ A ] ,  which therefore has a pure resolution of degree type g . . . g. Combina- 
torially this means that A is a multi-join of copies of the boundary complex of a 
( g  - 1)-simplex. Below we will often have to identify this case by a somewhat 
weaker information: 

Proposition 1.2. Let I A  be generated by monomials M I ,  . . . , MN of the same 
degree g. Then the following are equivalent: 
(a) M I ,  . . . , MN are painvise coprime; 
(b) the non-zero entries of the map cp2 have degree g. 

In fact, if Mi and M, are not coprime, then the relation 

forces (02 to have entries of degree < g. 
For a Cohen-Macaulay complex A the linearity of the resolution of K [ A ]  can 

be recognized by the h-vector of A. 

Proposition 1.3. Suppose that K  [A]  is Cohen-Macaulay. Then it has an m-linear 
resolution ifand only i f  
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1205 

The numerator of the Hilbert function of K  [ A ]  (over the denominator (1 - t l d )  
is given by ho + h l t  + .  . . + hstS ,  where the hi denote the components of h (A) .  
Therefore the proposition is (almost) identical with Exercise 4.1.17 of [2] ,  and 
since it is an exercise, we omit the proof. 

In the following the m-Cohen-Macaulay property introduced by Baclawski 
[ I ]  will play acertain role. One says that A  is m-Cohen-Macaulay (over K) if for 
all W c V, 0 5 #W 5 m - 1, the restricted complex A  \ W  is Cohen-Macaulay 
and has the same dimension as A.  This condition can be slightly weakened: 

Proposition 1.4. Suppose that m 2 2. 
(a) The following properties are equivalent: 

(i) A  is m-Cohen-Macaulay over K; 
(ii) for each W  C V, #W = m - 1, the restricted complex A  \ W  is Cohen- 
Macaulay over K  and has the same dimension as A; 
(iii) K [ A ]  is Cohen-Macaulay, and the minimal and maximal shifs in its 
resolution satisfL the equations m,  = M, = d + i for i = n - d - m + 2, . . . , 
i = n - d .  

(b) Under the equivalent conditions of (a), K [ A ]  has a pure resolution if (and 
only ifl the Stanley-Reisner rings K  [ A  \ W ]  have pure resolutions of the same 
shift type for all W  C V, #W = m - 1. 

PROOF. (a) We only need to show the implication (ii) + (i) for m = 2; the 
general case follows by induction. If /?n-p,l # 0 for some j # n,  then also 
/?n-p,j  ( K  [ A  \ v ] )  # 0 for some vertex v of V: choose v outside a proper subset 
W  of V that contributes to j3n-p,j. However, this is impossible since, by our 
assumption, K [ A  \ v]  has projective dimension #(V \ {v))  - d = n - 1 - d .  

Since /?,,-d is non-zero and pn-d = /?n-p,n, We have Mn-d = mn-d = n. If 
the projective dimension of K [ A ]  wouldexceed n-d, then Mn-d+, mn-d = n,  
in contradiction to the inequality noticed above. 

The equivalence of (i) and (iii) follows from similar arguments. It is due to 
Baclawski [ I ] ,  and can also be found in [2, Section 5.61. 

(b) Again it is enough to treat the case m = 2. It follows from the preceding 
argument that the homology of the whole complex A  only contributes to B n p p .  
If there were proper subsets W, W' C V of different cardinalities such that the 
homologies of Aw and Awl contribute to the same Betti number of K [ A ] ,  then for 
vertices w  # W  and w' $ W' the Stanley-Reisner rings K [ A  \ w ]  and K [ A  \ w'] 
cannot have pure resolutions of the same shift type. 0 

2 Ideals generated in degree 2 

In this section we will exploit Hochster's formula in order to give a complete 
classification of those simplicia1 complexes A  for which K [ A ]  has a 2-pure reso- 

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
K
e
n
t
u
c
k
y
]
 
A
t
:
 
2
0
:
2
4
 
1
1
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



1206 BRUNS AND HIBI 

lution. In particular I A  is generated by elements of degree 2, what can be described 
combinatorially by saying that A is the (necessarily) unique maximal member of 
the family of simplicial complexes with the same 1-skeleton as A. 

Froberg [5] classified all A for which K [ A ]  has a 2-linear resolution: these 
are exactly those simplicial complexes for which I A  is generated by monomials 
of degree 2 and whose 1-skeleton is a chordal graph. Therefore it is enough to 
find the simplicial complexes with a 2-pure, but not 2-linear resolution. 

Theorem 2.1. The Stanley-Reisner ring of a simplicial complex A has a 2-pure, 
but not 2-linear resolution exactly in the following two cases: 
(i) A is a multi-cone over a 1-dimensional cycle; in particular the free resolution 
o fK[A] i so fdegree type2  1 . . .  12;  
(ii) A is the multi-join of copies of rn ; the free resolution of K [ A ]  is the Koszul 
complex of I d ,  and thus of degree type 2 2 . . . 2 2. 

PROOF. That the Stanley-Reisner ring of a (multi-cone over a) 1-dimensional 
cycle has afree resolution of the type given follows easily from Hochster's formula 
or from the fact that a sphere is Gorenstein, in conjunction with our observations 
about the shifts in minimal free resolutions of Cohen-Macaulay rings. 

If A is the multi-join of copies of , then I A  is generated by pairwise 
coprime monomials of degree 2. These monomials form a regular sequence, and 
therefore the Koszul complex of I A  resolves K [ A ] .  

Conversely suppose that K [ A ]  has a 2-pure, but not 2-linear resolution. Then, 
by virtue of Froberg's theorem, the I -skeleton of A has acycle r of length at least 4 
without a chord. Note that r = Avert(r). If V = vert(f) ,  then < = A ,  and we 
are done. Otherwise there exists a vertex x outside f .  We have-H ( f ,  K )  # 0, 
and because of our hypothesis Hochster's formula implies that Ho(A W ,  K )  = 0 
for all subsets W of V with #W = g - 1 where g is the length of r .  

Let v be a vertex of r with neighbouring vertices u and w on f .  We choose 
W = (vert(r)  \ { u ,  w)) U ( x ) .  Then A w  is connected, and this is only possible 
if { v ,  X )  is a face of A. If x is the only vertex of A outside r ,  then we are again 
done: the 1-skeleton of A is the 1-skeleton of a cone over r ,  and therefore A is 
such a cone. 

Finally assume that there exists a vertex y # x of A ,  y $ vert(f) .  We 
choose non-neighbouring vertices u and w of f ,  and set W = { u ,  w, x ,  y ) .  If 
{ x ,  y )  $ A ,  then, according to our previous observation, A w  is a 4-cycle. By 
Hochster's formula this implies that the free resolution of K [ A ]  is of degree type 
a,  up-1 . . . a* 2 2. As noticed in Section 1, this is only possible if Id is generated 
by pairwise coprime monomials of degree 2, and thus case (ii) of the theorem 
applies. 

The only remaining possibility is that { x ,  y)  E A. Since x ,  y are arbitrary 
vertices outside r, the complex A must indeed be a multi-cone over f .  
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1207 

The following corollaries were proved in the authors' previous article [3] .  

Corollary 2.2. Let A  be a simplicia1 complex of dimension one. Then its Stanley- 
Reisner ring K  [ A ]  has apure resolution ifand only i f A  is one of the the following: 
(i) complete graph; (ii) forest; (iii) cycle. 

In fact, I A  contains all squarefree monomials of degree 3. So, if lA is generated 
by monomials of degree 3, then A  is a complete graph. Otherwise I A  is generated 
by degree 2 monomials, and we can apply the theorem. If K [ A ]  has a 2-linear 
resolution, then, as an immediate consequence of Hochster's formula, A  must be 
a forest. If A  is of the type (i) of the theorem, then it is a cycle, and if it is of type 
(ii), then it is necessarily a 4-cycle. 

Corollary 2.3. Suppose that P  is a Cohen-Macaulaypartially ordered set of rank 
d - 1 (with d > 2 )  which possesses the rank decomposition P = Po U P1 U . . . U 
Pd-l with each #PI 2 2. Then the Stanley-Reisner ring K [ A ( P ) ]  of P  has a 
pure resolution i f  and only ifwe have one of the following: 
(i) d = 2 and P is a cycle; 
(ii) d > 3, each P, contains exactly 2 elements, and elements x # y are incom- 
parable i f  and only if they are of the same rank; 
(iii) the number of maximal chains of P is # P - d + 1. 

Note that is generated by the monomials representing pairs of incom- 
parable elements. The cases (i) and (ii) correspond to the cases (i) and (ii) of the 
theorem, and in presence of the Cohen-Macaulay condition, (iii) is equivalent 
to the 2-linearity of the resolution. In fact, the number of maximal chains of 
P  equals the sum over all entries of the h-vector. These are non-negative, and 
ho = 1, h = # P - d. Now one applies Proposition 1.3. 

3 Simplicia1 complexes of dimension 2 

Let A  be a simplicial complex of dimension 2. Then I A  contains all squarefree 
monomials of degree 4. Thus, if it is generated by such monomials, then A is the 
2-skeleton of a simplex. If I A  is generated by degree 2 monomials and K  [ A ]  has a 
pure free resolution, then the structure of A  is completely described by Froberg's 
theorem or Theorem 2.1. It remains to consider the case in which Id has a system 
of generators consisting of monomials of degree 3. 

It is impossible that the second syzygy matrix of K [ A ]  has entries of degree 
3, since in this case I A  would be generated by pairwise coprime monomials. But 

then A  is the multi-join of copies of , and has dimension at least 3. There are A 
only finitely many cases in which the second syzygy matrix has degree 2; these 
will be enumerated in Proposition 5.1 below. Therefore the condition in Theorem 
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1208 BRUNS AND HIBI 

3.1 that the second syzygy matrix of K [ A ]  is generated by linear elements is 
harmless. 

Of course K [ A ]  may have a 3-linear resolution, and already at this point a 
severe complication comes up: whether K  [ A ]  has a 3-linear resolution, depends 
in general on the field of coefficients -in contrast to the results in Section 1, where 
the choice of the field K  is irrelevant. The standard example of such behaviour is a 
triangulation of the real projective plane for which K  [ A ]  has a 3-linear resolution 
if and only if char K  # 2; see, e.g., [2, p. 2281. 

The potential numerical types of 3-pure, but not 3-linear resolutions of Stanley- 
Reisner rings of 2-dimensional simplicia1 complexes are essentially given by the 
next theorem. The question that remains open in (b) will be discussed in Re- 
mark 3.4. 

Theorem 3.1. Let A  be a simplicial complex of dimension 2 for which K  [ A ]  has 
a 3-pure, but not 3-linear resolution. Assume that the second syzygy matrix of 
K  [ A ]  is generated by linear elements. 
(a) Then A  is Cohen-Macaulay over K ,  and one of the following conditions hold: 

(i) #V 1 6 is even, A  is 2-Cohen-Macaulay over K ,  and the resolution 
degrees of K  [ A ]  are 2 1 . . . 1 3; one has 

(ii) #V 2 7 is odd, A  is 3-Cohen-Macaulay over K ,  and the resolution 
degrees of K  [ A ]  are 1 2 1 . . . 1 3; one has 

(b) Simplicia1 complexes of type (a)(i) exist for all even numbers #V 2 6, and a 
simplicial complex of type (a)(ii) exists for #V = 7. 

PROOF. Part (b) is covered by Propositions 3.2 and 3.3 below. 
For part (a) we set n = #V and p = proj dim K [ A ]  as usual. Then the shifts 

ci, i 1 1, in the minimal free resolution of K  [ A ]  satisfy the inequalities ci-1 < ci 
and i + 2 5 ci 5 n. In particular we have p 5 n - 2, and if p = n - 2, then 
ci = i + 2 for i = 1, . . . , p. This however is impossible, since we assume that 
K  [ A ]  does not have a 3-linear resolution. It follows that p I: n - 3, and therefore 
p = n - 3: note that p 2 n - dim K  [ A ]  = n - 3. Furthermore cp = n, and there 
exists exactly one index i with c, = ci-1 + 2. In other words, the degree type of 
the minimal resolution is 

1 . . .  1 2 1  . . .  13.  
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1209 

Assume that the '2' occurs at place m, and that it is followed on the left by at 
least two degrees 1. We choose a subset W of V of cardinality m + 3, and replace 
A by Aw. Then A w  fulfills all our assumptions, whence we may assume that 
m = p - 2. An evaluation of the Herzog-Kiihl formula (3)(i) yields 

a number which for m E Z is never an integer. Hence at most a single '1' may 
follow the '2'. 

Now we replace A by A' = Aw where W c V has cardinality n - 1. 
Evaluating the formula (3)(i) for A' gives m(m + 4)/6 for its first Betti number, 
and so m must be even. Therefore, if n is odd, exactly one '1' follows the '2', and 
if n is even, the degree 2 matrix is the last one in the resolution. 

The statement concerning the 2-Cohen-Macaulay property in (i) and the 3- 
Cohen-Macaulay property in (ii) follows immediately from 1.4. 

In order to compute the f -vector and the h-vector, one determines the multi- 
plicity e (K [A]) from the Huneke-Miller formula (3)(ii), and uses that e (K [A]) = 

f2(A).  0 

For even n 2 6 we now construct the simplicia1 complexes whose existence 
has been claimed in part (b) of the theorem. 

Proposition 3.2. Let n 2 6 be an even integel: Then the simplicial complex A 
whose facets are  

is 2-Cohen-Macaulay and has a pure resolution of degree type 2 1 . . . 1 3 over 
every field K. (The numbers giving the vertices are to be read modulo n). 

PROOF. In view of Proposition 1.4(b) we must show that for all vertices v the 
restriction A' = A \ v is Cohen-Macaulay with 3-linear resolution. By its 
definition, A is invariant under the action of the cyclic group whose generator 
sends vertex i to vertex i + 1, i = 1, . . . , n. Therefore we may assume that v = I .  

We order the faces of A' in blocks B,, j  = 4,  . . . , n. The blocks Bj are 
constructed by descending induction, starting with j  = n: Bj contains all facets 
F with j  E F and F $ B, U . . . U Bj+l .  If j is even, then the facets in Bj are 
ordered in the sequence 

{2, 3, j ] ,  {4,5, j l ,  . . . , { j  - 4, j  - 3, j l ,  
{3, j - 1, j ] ,  {5, j  - 1, j ] ,  . . . , { J  - 3, j  - 1, j l ,  { J  - 2, J - 1, J ) ,  

and if j  is odd, then they are arranged in the sequence 
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1210 BRUNS AND HIBI 

For a shelling we remove the facets as follows: first those of B, in the order 
specified (i.e, starting with {2,3, n}), then those of B,-1 etc., the last facet being 
{2, 3,4]. It is not hard to see that at each step the intersection of the removed 
facet with the subcomplex generated by the 'later' facets is generated by I-faces. 
Therefore A' is shellable. 

The number of facets of A' is (n - 3)(n - 2)/2, and since it has the maximum 
number of vertices and I-faces, its h-vector is (1, n - 4, (n - 3)(n - 4)/2). It 
follows from 1.3 that A' has a 3-linear resolution. 0 

Before we write down the simplicial complex A with 7 vertices whose exis- 
tence has been claimed in 3.l(b), let us observe that each 1-face of A must be 
contained in exactly three facets; this claim will be justified in Remark 3.4(a) 
below. Each I-face of the simplicial complex with 6 vertices given in 3.2 is con- 
tained in at least two and at most three facets, and therefore we simply try to add 
a seventh vertex and all the 'missing' facets. This idea works, but it is useful to 
specify A with a different enumeration of its vertices: 

Proposition 3.3. The simplicial complex A with the facets 

has a pure resolution of degree type 1 2 1 3. 

PROOF. It is enough to show that A \ v has a pure resolution of degree type 2 1 3 
for all vertices u. By the cyclic symmetry of A we may assume u = 7. The 
substitution 4 H 1, 6 H 2 ,2  H 3, 3 H 4, 1 H 5 ,  5 H 6 transforms A \ 7 into 
the complex with 6 vertices specified in Proposition 3.2. 0 

In the following remark we discuss the problem of finding simplicial com- 
plexes of resolution type 3.l(a)(ii) with at least 9 vertices. Moreover we list some 
examples with other resolution types. 

Remark 3.4. (a) Let A be a simplicial complex with an odd number n of faces and 
resolution type 3. l (a)(ii), and choose avertex u of A. Then the link of u in A is a 3- 
connected graph in which each vertex is adjacent to exactly 3 edges. In fact, A has 
the h-vector ( I ,  n - 3, (n - 2)(n - 3)/2, (n - 2)/2), and A \ x  has the resolution 
type 3.l(a)(i), and therefore the h-vector (1,  n - 4, (n - 3)(n - 4)/2, (n - 3)/2), 
whence h k A { x ]  has the h-vector (1, n - 3, (n + 1)/2), and thus the f -vector 
(n - 1,3(n - 1)/2). Note that linkA{u] is 3-Cohen-Macaulay along with A; this 
follows easily from the exact sequence connecting the Stanley-Reisner rings of 
starA{u], A and A \ v.  Hence h k A { ~ }  must be 3-connected, and in particular 
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1211 

each vertex must be adjacent to at least, and thus exactly three edges. This implies 
that each 1-face of A is contained in exactly 3 facets. 

(b) One sees easily that for each vertex v of one of the 'even' simplicial 
complexes constructed in Proposition 3.2 there exist two vertices u, w such that 
the I-faces {v, u) and {v, w) are contained in exactly n/2 facets, whereas all other 
1-faces {v, x )  are contained in exactly 2 facets. 

This phenomenon is further illustrated by the following assertion whose ver- 
ification we leave to the reader. Let A be a simplicial complex of type 3.l(a)(i), 
and v # w vertices of A; then the following are equivalent: (i) A \ { v ,  w} is 
Cohen-Macaulay; (ii) the link of w in A \ v is a tree; (iii) { v ,  w) is contained in 
exactly n/2 facets of A. 

(c) It follows from (a) and (b) that it is impossible for n 2 8 to supplement 
such an 'even' complex by one more vertex in order to obtain an 'odd' complex 
of resolution type 3.1 (a)($. 

The example constructed in 3.2 for n = 6 is uniquely determined by its 
resolution type, and therefore the same holds for the example with n = 7 in 3.3. 
However, for n = 8 there exists a second isomorphism type which also carries a 
cyclic symmetry and has the property observed in (b), and there are many more 
isomorphism types without these extra features; see (e). 

(d) An exhaustive computer search has shown that there exist no simplicial 
complexes of type 3.1 (a)(ii) with 9 vertices (at least not over a field of characteristic 
13). This leads us to conjecture that for n 2 9 there exist no simplicial complexes 
of this type. 

The following criterion could be used to detect them. Let A be a 2-dimensional 
simplicial complex with an odd number n 2 7 of vertices such that Id is gener- 
ated by degree 3 monomials; then the following are equivalent: (i) K[A] has 
a-resolution of type 3.l(a)(ii); (ii) f2(A \ {v, w}) = (n - 3)(n - 4)/2 and 
H l ( A  \ ( v ,  w]; K)  = 0 for all vertices v # w. 

In fact, if conditionrli) is fulfilled, then the shift n - 2 does not appear in 
the resolution, so that H, (A \ {v, w]; K) = 0 for all i .  That A \ {v, w) has 
exactly (n - 3)(n - 42/2 facets, follows from-the formula (3)(ii). Conversely, if 
(ij) is satisfied, then H2(A \ { v ,  w}; K) S Hl(A \ {v,  w}; K) = 0, and since 
Ho(A \ {v, w]; K) = 0 by hypothesis, the shift 7 does not appear in the resolution. 
Using Proposition 1.1 the reader may check, that this is the case if and only if the 
resolution has the desired type. 

(e) In the search we have found 85 isomorphism classes of simplicial com- 
plexes with 8 vertices which (over a field of characteristic 13) have resolution 
type 3.l(a)(i) and the following property: each 1-face is contained in at least two 
and at most three facets. Several of these complexes can be supplemented by a 
ninth vertex such that the resulting complex is 2-Cohen-Macaulay and has the 
property stated in (a). In particular this property does not exclude the existence 
of a simplicial complex of type 3.l(a)(ii) for n 3 9. 
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1212 BRUNS AND HIBI 

(f) We have searched for further 2-Cohen-Macaulay complexes A with cyclic 
symmetry and pure resolutions, and found the following types. 

degree type 

4 Pure Taylor resolutions 

In this section we shafl entirely work in an algebraic setup; therefore we use the 
language of ideals generated by monomials instead of that of simplicia1 complexes. 
Let I be an ideal in the polynomial ring R = K [ X I ,  . . . , X,] that is generated 
by (not necessarily squarefree) monomials MI ,  . . . , M N .  Taylor [I I]  (see also 
Eisenbud [4]) constructed a free resolution of I given by the complex 

with Fk = l\k ~ ~ , k  = I , . , . ,  N and 

pk(eil A . . . A e,,) = 

Here e l ,  . . . , e N  is the canonical basis of R ~ ,  and- indicates that Mi, and eij 
are to be omitted. In order to make the maps in this complex homogeneous 

k N  of degree zero one has to assign a grading to l\ R in such a way that the 
degree of the basis element ei, A . . . A ei, equals the degree of the monomial 
lcm(Mi, , . . . Mi,). It is clear that To is a pure resolution with shifts C N ,  . . . , cl if 
and only if deg(lcm(Mi, , . . . , Mi,)) depends only on k, and not on the monomials 
Mi, . 

The resolution above is already defined over the ring Z of integers, and we 
could replace the field K by Z. In general the Taylor resolution is not a minimal 
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1213 

one. If it is pure, then R / I  also has a pure minimal free resolution over Z, and 
therefore over an arbitrary field. In this case the projective dimension p of R / I  
is the minimum index for which cp = cp+l (with dN+l = dN). 

We say that I  is of pure Taylor type CN, . . . , cl if it is generated by squarefree 
monomials and the Taylor resolution of R / I  is a pure free resolution with shifts 
C N ,  . . . , CI . (The restriction to squarefree monomials is not essential since every 
monomial ideal can be 'deformed' into a squarefree one with the same numerical 
data.) In the following we want to determine all the shifts CN,  . . . , cl which can 
occur in a pure Taylor resolution. Furthermore we will see that the ideal I whose 
resolution has the shifts CN,  . . . , cl is uniqely determined. 

It is best to translate the problem of finding all ideals of pure Taylor type 
into one of Boolean algebra. Let B be a boolean algebra (with join U, meet n, 
complement -, and maximal element i). A function V: B + Z is called a 
valuation if it satisfies the identity V(bl n b2) + V(bl u b2) = V(bl) + V(b2). 
We say that V in non-negative, if V(b) 2 0 for all b. The valuations on B form a 
free abelian group. If B is finite, then every choice of values v(a) for the atoms 
a of B uniquely extends to a valuation of B; therefore the group of valuations of 
V is a finitely generated free abelian group of rank equal to the number of atoms 
of B. 

Proposition 4.1. Let BN be the free boolean algebra on N elements p1, . . . , p ~ .  
Then the following are equivalent: 
(a) there exists a squarefree monomial ideal I  ofpure Taylor type CN,  . . . , cl; 
(b) there exists a non-negative valuation V on BN with V(pil u . . . u pik) = ck 
f o ra l l k=  1, . . . ,  N a n d 1  s i l  < . . .  <ik  5 N .  

PROOF. Suppose that I c K [ X ]  is of pure Taylor type CN, . . . , cl. We identify 
each squarefree monomial M with the set of variables dividing M. Then the 
assignment pi H Mi extends to a unique homomorphism @ of Boolean algebras 
from BN into the set of subsets of X. We define V by V(p) = #(@(p)) for all 
elements E BN. It is obvious that V has the properties required for (b). 

Conversely, let V be a non-negative valuation on BN. For each atom a E BN 
we choose indeterminates Xu, 1, . . . , Xu, and define the monomial Mi, i = 

It is clear that the ideal generated by MI,  . . . , MN has pure Taylor type CN,  . . . , cl . 
n 

The proof of Proposition 4.1 describes how to construct all ideals of pure 
Taylor type. Furthermore it shows that such an ideal is uniquely determined by its 
type. In order to test whether there exists an ideal of type CN, . . . , cl ,  we define 
a valuation on BN by setting 
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BRUNS AND HIBI 

f o r a l l k  = 1 , . . . ,  N a n d 1  5 il  < . . .  < ik 5 N , a n d ~ ( i )  = C N .  I t i s a n e a s y  
exercise in boolean algebra to show that this is indeed possible, and to compute 
the values of V on the atoms of B N .  

Each atom a! has the form a! = pi, n . . . n pi,-, n p,, n . . . n pjk. By the 
symmetry in the definition of V, V(a!) depends only on k, and we set ak = V ( a ) .  
Using the principle of inclusion-exclusion one obtains 

for k = 1, . . . , n,  and ag = 0. The numbers ak, k = 1 ,  . . . , n ,  are called the 
atomic weights of I .  

Proposition 4.2. There exists an ideal I ofpure Taylor type C N ,  . . . , C ,  ifand only 
i f  

fork = I ,  . . . , N. Furthermore I is uniquely determined (up to isomorphism). 

Using the atomic weights we can reformulate the construction in the proof of 
Proposition 4.1 as follows. Let A be an (N - 1)-simplex. Then we associate with 
each (k - 1)-face of A a family of ak indeterminates, and define the monomials 
M I ,  . . . , MN by forming for each vertex v of A the product over all indeterminates 
associated with a face containing u .  

It is not difficult to characterize those ideals I which yield Cohen-Macaulay 
residue class rings. Unfortunately their number is quite small. 

Proposition 4.3. Let I C R = K I X I  , . . . , X,] be an ideal of pure Taylor type. 
Then the following are equivalent: 
(a) RII  is Cohen-Macaulay; 
(b) I is unmixed; 
(c) the generators Mi ,  . . . , MN 

(i) form a regular sequence (eq~ivalently, are painvise coprime), or 
( i i )  are qf'the form M, = L 1  . . . L, . . . LN where L 1 ,  . . . , LN # I arepairwise 
coprime squarefree monomials. (In this case the residue class ring R/ I has 
projective dimension 2.) 

PROOF. The implication (a) j (b) is well-known. 
For (b) 3 (c) we choose an index k with ak # 0. The set { l ,  . . . , N} can be 

covered by m = J N / k l  subsets J1,  . , , , J, of cardinality k. Each Jk corresponds 
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1215 

tOtheatOmak = pi, n . .  .n,!i,N-knbj, fl. . .llpjk with { j l ,  . . . , jk} = J k .  Foreach 
v we choose an indeterminate Xu, among those indeterminates which correspond 
to the atom a, in the sense of the proof of Proposition 4.1. Then each monomial 
Mi contains one of the Xu, as a factor. Therefore the ideal (Xu,, . . . , Xu,) is a 
prime ideal containing I ,  and a fact a minimal such ideal: only the monomials 
Mi with i E J ,  contain Xu,. 

On the other hand we can also find a minimal covering of {I ,  . . . , N) by 
N - k + 1 subsets of cardinality k, and therefore a minimal prime ideal of I which 
has height N - k + 1. The equation rN/kl = N - k + 1 has only the solutions 
k = l a n d k = N - 1 .  

Furthermore these arguments show that there is exactly one index k with 
ak # 0 if I is unmixed. Thus an unmixed ideal I has the atomic weights (i) 
a1 > 0 and ai = 0 for i # 1 or (ii) a ~ - 1  > 0 and ai = 0 for i # N - 1. In 
case (i) the monomials MI ,  . . . , MN are pairwise coprime, and therefore form 
a regular sequen?. If N > 2, then in case (ii) the monomials Mi are given 
by Mi = L . . . Li . . . LN where L 1 ,  . . . , LN are pairwise coprime squarefree 
monomials of the same degree. 

The implication (c) + (a) follows immediately from the fact that in both cases 
(i) and (ii) the codimension of I equals the projective dimension of R / I .  

The reader may check the following more general assertion: let I be an ideal 
of pure Taylor type CN, . . . , cl with atomic weights a l ,  . . . , aN, and set u = 
min{k: ak # 0) and w = max(k: ak # 0); then 

codim I = [Nlw], 

proj dim R / I  = N - u + 1 

= max(codim P : Pis a minimal prime overideal of I ) .  

5 Special cases 

In this section we want to determine all squarefree monomial ideals with a pure 
minimal free resolution of degree type g p  . . . g2 m- 1 m. Since the case rn = 2 is 
completely covered by Frijberg's theorem and Theorem 2.1 above, it is sufficient 
to treat the case m 3 3. Since it is not necessary to specify the polynomial ring 
in which the ideals under consideration live, we simply denote it by R. 

There is a trivial class of ideals I whose free resolution has the required type: 
choose aregular sequence L1, . . . , LN of monomials of degree m - 1 and multiply 
each of them by a new .indeterminate Z. Then R / I  is resolved by the Koszul 
complex associated with the sequence L1, . . . , LN except that the rows of the 
first matrix are formed by ZL1, . . . , ZLN. We call the sequence ZLl  , . . . , ZLN 
a spider (with body Z and legs L1, . . . , LN). 
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1216 BRUNS AND HIBI 

We start with the case in which m = 3; it is slightly more complicated than 
that of m 2 4. The following propsition supplements Theorem 3.1 since it covers 
a case excluded in that theorem. 

Proposition 5.1. Let M I ,  . . . , M N  be squarefree monomials generating an ideal 
with a minimal pure resolution of degree type gp . . . g2 2 3. Suppose that 
M I ,  . . . , M N  is not a spidel: Then M i ,  . . . , M N  are represented by lines of the 

where the vertices are the indeterminates and each line stands for the product of 
its vertices. In particular we have 3 N 5 7. The degree type of the resolution 
is 1 2 3 for N = 3,4, and 1 1 2 3 for N = 5 , 6 ,  7.  (There are 2 non-isomorphic 
cases for N = 4.) 

Conversely, each set of lines of the Fano plane represents a squarefree mono- 
mial ideal with a minimal pure resolution of degree type gp . . . g2 2 3. 

PROOF. The rows of the second matrix in the minimal free resolution of R / I  
can always be chosen among the rows of the second matrix in the Taylor reso- 
lution. Since their entries have degree 2, the greatest common divisor of two of 
M I ,  . . . , M N  is either 1 or an indeterminate. 

We next observe that it is impossible to have two coprime monomials, say 
U V  W and XY Z. In fact, if another one of M I ,  . . . , M N  is a monomial in these 
6 variables, then it has exactly two variables in common with U V W or XYZ, 
which is impossible. But if there is no such monomial, then we must have a row 
with degree 3 entries in the second matrix of the free resolution. This follows 
from Hochster' formula (2) in Section 1 or by elementary arguments. 

Therefore, if i # j ,  then the greatest common divisor of Mi and Mi is an 
indeterminate. Elementary combinatorial arguments yield that the monomials 
M I ,  . . . , M N  are indeed represented by lines in the Fano plane. 

Conversely, given a subset of lines of the Fano plane, one can easily compute 
the minimal free resolution of the residue class ring it define. 0 

For m 2 4 one gets the following classification; again we may leave the details 
of the proof to the reader. (For m = 3 the ideals listed in the proposition below 
leave out that one which corresponds to all 7 lines of the Fano plane.) 

Proposition 5.2. Let m 2 4, and let X be an symmetric ( m  + 1 )  x (m  + 1) matrix 
whose entries above the main diagonal are pairwise different indeterminates, 
whereas those on the main diagonal are 1. Let L1, . . . , L,+l be the products of 
the entries of the rows of X .  
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STANLEY-REISNER RINGS WITH PURE RESOLUTIONS 1217 

Then, for a sequence M i , .  . . , MN of squarefree monomials that is not a 
spidel; the residue class ring R I I ,  I = ( M I ,  . . . , MN) ,  has a pure minimal free 
resolution of degree type gp . . . g2 m- 1 m i f  and only i f  M 1 ,  . . . , MN is given 
by a subset of L l ,  . . . , L,+I. 

Thedegreetypeis 1 2  . . .  m-1 m i f N  = m +  1,andu u f l  . . .  m-1 m if 
N = m + 1  - u , u =  1 , . . . ,  m-2. 
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