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The very first version of Normaliz [4] was meant
to compute normalizations of affine monoids (or semi-
groups), hence the name. Over the years it has been ex-
tended to a powerful package for discrete convex geo-
metry. We explain its main computation goals by a sim-
ple example, sketch the mathematical background and
discuss the basic steps in the Normaliz primal algorithm.
Some remarks on the technical aspects and the history
conclude this overview.

The main computation goals
Suppose we are interested in the following type of

3× 3 matrices

x1 x2 x3

x4 x5 x6

x7 x8 x9

and the problem is to find nonnegative integer values for
x1, . . . , x9 such that the 3 numbers in all rows, all co-
lumns, and both diagonals sum to the same constantM.
Sometimes such matrices are called magic squares and
M is the magic constant. This leads to a system of 7
diophantine linear equations:

x1 + x2 + x3 = x4 + x5 + x6;

. . . = . . . (1)
x1 + x2 + x3 = x3 + x5 + x7.

Our goal is to understand the set of solutions in nonne-
gative integers.

Since the equations are linear homogeneous, and the
positive orthant is closed under addition, the sum of two
solutions is again a solution (the magic constants add
up). It follows that the set M of all solutions is a mo-
noid (or semigroup). In a systematic framework we can
describe it as follows:

M = C ∩ L

where C is a pointed cone in Rd and L is a sublattice of
Zd. In our case d = 9, C is the positive orthant, and L is

the lattice of integer solutions to the system (1). There
are other ways to describe M , but this choice of C and
L is exactly Normaliz’ approach to the problem. Two
natural questions suggest themselves:

(Generation) Is the monoid of magic squares fi-
nitely generated, and if so, what is a system of
generators?

(Enumeration) GivenM, how many magic squa-
res of magic constantM are there?

The answers to Generation and Enumeration are the
main computation goals of Normaliz.

Some background
The introductory example is a rather special case of

the objects for which Normaliz solves Generation and
Enumeration: since version 3.0 it can be applied to ar-
bitrary intersections of rational polyhedra and affine lat-
tices. In other words, Normaliz is a solver for systems
of affine-linear diophantine inequalities, equations and
congruences.

Nevertheless, for the sake of simplicity, in this over-
view we stick to the special caseM = C∩L, and specia-
lize it even further, following Normaliz’ course of com-
putation. In our example we can first introduce coordi-
nates in the solution space of the system (1), and then
intersect the positive orthant with it. After this reduction
step, we can assume that we want to compute the integer
points in a d-dimensional pointed cone C ⊂ Rd. This is
the core case to which Normaliz reduces the given input
data by preliminary transformations. Let us first solve
Generation for cones:

Theorem 1 (Minkowski-Weyl) Let C ⊂ Rd. Then the
following are equivalent:

1. There exist (integer) vectors x1, . . . , xn ∈ Rd
such that

C = {x ∈ Rd : x = α1x1 + · · ·+ αnxn,

α1. . . . , αn ≥ 0}.
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2. There exist linear forms λ1, . . . , λs (with integer
coefficients) on Rd such that

C = {x ∈ Rd : λi(x) ≥ 0, i = 1, . . . , s}.

If the equivalent conditions of the theorem are satis-
fied, C is called a (rational) cone. (Sometimes the at-
tribute polyhedral is added.) The cone C is pointed if it
does not contain a linear subspace of positive dimensi-
on. In this case the elements of a minimal set x1, . . . , xn
of generators are unique up to permutation and multi-
plication by positive scalars. We call them extreme rays.
The scalar is 1 in the integer case if we require that the
coefficients are coprime.

The dimension of a cone is the dimension of the vec-
tor subspace it generates. If dimC = d, then the line-
ar forms λi are unique up to permutation and positive
scalar multiples if the system is minimal, and again the
scalar must be 1 if we require that their coordinates are
coprime integers. The linear forms λ1, . . . λs then define
the (relevant) support hyperplanes Hi = {x : λi(x) =
0}, and Theorem 1(2) represents C as an intersection of
the (positive) halfspaces H+

λi
= {x : λi(x) ≥ 0}.

The conversion from generators to support hyper-
planes is usually called convex hull computation and the
converse is called vertex enumeration. Both directions
are completely equivalent since they amount to the dua-
lization of a cone.

That Generation makes sense also for lattice points
is guaranteed by

Theorem 2 (Gordan’s lemma) Let C ⊂ Rd be a ratio-
nal pointed cone. Then the monid M = C ∩ Zd is fini-
tely generated. More precisely, it has a unique minimal
system E of generators.

A set {z1, . . . , zm} ⊂ M generates the monoid
M if every element of M is a linear combination of
z1, . . . , zm with nonnegative integer coefficients. The
unique minimal generating set Hilb(C) (or Hilb(M))
in Theorem 2 is called the Hilbert basis

0

Figure 1: A Hilbert basis

of C (or M ). We do not see a good historical reason
for this nomenclature – the term “Gordan basis” would
be much more appropriate. In the restricted setting that
we have reached, we can now reformulate Generation
as follows:

Compute the Hilbert basis of a rational cone C.

The Hilbert basis is the set of irreducible elements in
M , i.e., elements x that can not be written in the form

x = y+z with y, z ∈M , y, z 6= 0. This proves uniquen-
ess, and is important for the reduction of a generating set
to the Hilbert basis.

Let us turn to Enumeration. For it we need a gra-
ding, a Z-linear form deg : Zd → Z. For the next theo-
rem we restrict the generality even further.

Theorem 3 (Hilbert; Ehrhart) Let d ≥ 1. Suppose
that the extreme rays of the d-dimensional cone C ha-
ve degree 1 and set M = C ∩ Zd. Then the lattice point
enumerator

H(M,k) = #{x ∈M : deg x = 1}

is given by a polynomial qM with rational coefficients
for all k ≥ 0. Equivalently, the generating function∑∞

k=0H(M,k)tk defines a rational function of type

HM (t) =
1 + h1t+ · · ·+ hut

u

(1− t)d
,

h1, . . . , hu ∈ Z, u < d.

The polynomial qM is called the Hilbert polynomi-
al and HM (t) the Hilbert series of M – for very good
reason since the theorem can be derived from the theo-
ry of graded algebras, a key observation of Stanley. In
the combinatorial context it was independently proved
by Ehrhart, and therefore one speaks of the Ehrhart po-
lynomial and Ehrhart series as well. The hi are nonne-
gative; this follows from Hochster’s theorem by which
the monoid algebra K[M ] is Cohen-Macaulay for any
field K, but it can also be shown combinatorially.

Without the hypothesis on the degree of the extreme
rays, the theorem must be reformulated: the polynomial
is only a quasipolynomial in general, i.e., a “polynomi-
al” with coefficients that are periodic in k, and the deno-
minator takes a more complicated form.

The leading coefficient of the Hilbert/Ehrhart poly-
nomial qM has the form e(M)/(d − 1)! with a positive
integer e(M) that is called the multiplicity ofM . It is the
lattice normalized volume of the polytope spanned by
the extreme rays. Moreover, e(M) = 1 +h1 + · · ·+hu.
Clearly

Compute the Hilbert series of M

is the right formulation of Enumeration now.

The magic squares continued

The input to Normaliz for the computation of the
magic squares is encoded as follows:

amb_space 9
equations 7
1 1 1 -1 -1 -1 0 0 0
...
1 1 0 0 -1 0 -1 0 0
grading
1 1 1 0 0 0 0 0 0
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The first equation reads

x1 + x2 + x3 − x4 − x5 − x6 = 0,

as desired, and the other equations are encoded analo-
gously. The magic constant is the grading. If only equa-
tions are given, but no inequalities, Normaliz assumes
that the nonnegative solutions should be computed. We
look at some data in the output file:

5 Hilbert basis elements
5 Hilbert basis elements of degree 1
4 extreme rays
4 support hyperplanes

embedding dimension = 9
rank = 3
...

grading:
1 1 1 0 0 0 0 0 0
with denominator = 3

The input grading is the magic constant. However,
as the denominator 3 shows, the magic constant is al-
ways divisible by 3, and therefore the effective degree
isM/3. This degree is used for the multiplicity and the
Hilbert series.

multiplicity = 4

Hilbert series:
1 2 1
denominator with 3 factors:
1: 3

degree of Hilbert Series ... = -1

Hilbert polynomial:
1 2 2
with common denominator = 1

The Hilbert series and the Hilbert polynomial are

HM (t) =
1 + 2t+ t2

(1− t)3
and qM (k) = 1 + 2k + 2k2,

and after substitutingM/3 for k we obtain the number
of magic squares of magic constantM, provided 3 divi-
desM.

5 Hilbert basis elements of degree 1:
0 2 1 2 1 0 1 0 2
1 0 2 2 1 0 0 2 1
1 1 1 1 1 1 1 1 1
1 2 0 0 1 2 2 0 1
2 0 1 0 1 2 1 2 0

The 5 elements of the Hilbert basis represent magic
squares. We show the first, third and fiftth:

0 2 1
2 1 0
1 0 2

1 1 1
1 1 1
1 1 1

2 0 1
0 1 2
1 2 0

All other solutions are linear combinations of these
squares with nonnegative integer coefficients.

Actually we were lucky: if we increase the format
of the squares to 4 × 4 or higher, the extreme rays are
no longer of degree 1. Normaliz computes the Hilbert

basis and Hilbert series quickly for 5 × 5 squares, and
the Hilbert basis (of 522, 347 vectors) for 6× 6 squares
in reasonable time, but the Hilbert series for 6× 6 is out
of reach.

The primal algorithm
For the computation of Hilbert bases Normaliz pro-

vides two algorithms at the user’s disposal. Here we re-
strict ourselves to the primal algorithm that also com-
putes the Hilbert series if this is desired. For the dual
algorithm we refer the reader to Bruns and Ichim [3].

The primal algorithm is based on triangulations. We
assume that the cone C is pointed and defined by a ge-
nerating set. (If it is defined by inequalities, Normaliz
first computes the extreme rays.) After some prelimi-
nary transformations we can further assume that C has
dimension d and that Zd is the lattice to be used. Then
the primal algorithm proceeds in the following steps:

1. Fourier-Motzkin elimination computing the sup-
port hyperplanes of C;

2. pyramid decomposition and computation of the
lexicographic triangulation ∆;

3. evaluation of the simplicial cones in the triangu-
lation:

(a) enumeration of the set of lattice pointsEσ in
the fundamental domain of a simplicial sub-
cone σ,

(b) reduction ofEσ to the Hilbert basis Hilb(σ),
(c) Stanley decomposition for the Hilbert series

of σ ∩ L;
4. Collection of the local data:

(a) reduction of
⋃
σ∈∆ Hilb(σ) to Hilb(C ∩L),

(b) accumulation of the Hilbert series of the mo-
noids σ ∩ L.

This is the true chronological order only for small
examples. Typically the steps are interleaved in a com-
plicated way. We now explain some steps in more detail.

Convex hulls and triangulation
Fourier-Motzkin elimination allows us to compute

the support hyperplanes incrementally by extending the
cone C ′ = R+x1 + · · ·+R+xn−1 to C = R+x1 + · · ·+
R+xn. Suppose that

C ′ = H+
λ1
∩ · · · ∩H+

λr

for linear forms λ1, . . . , λr. We may assume that

λi(xn)


= 0 i = 1, . . . , p,

> 0 i = p+ 1, . . . , q,

< 0 i = q + 1, . . . , r.

Set

µij = λi(xn)λj − λj(xn)λi, i = p+ 1, . . . , q,

j = q + 1, . . . , r.
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Theorem 4 The cone C = R+x1 + · · · + R+xn is
the intersection of the halfspaces defined by the line-
ar forms λi, i = 1, . . . , q, and µij , i = p + 1, . . . , q,
j = q + 1, . . . , r.

The theorem leads to an extremely simple algo-
rithm. However, one must discard the superfluous ones
among the µij , and this needs some care; see Bruns and
Ichim [3] for the strategies of Normaliz.

The extension of a triangulation of C ′ to a triangu-
lation of C is easy as well. A triangulation is a face-
to-face decomposition of C into simplicial cones, i.e.,
cones whose extreme rays are linearly independent.

Theorem 5 Let ∆′ be a triangulation of C ′. Then we
obtain a triangulation ∆ of C by adding to ∆′ all sim-
plicial cones (σ ∩H) + R+xn where σ runs through ∆
and H is a support hyperplane of C ′ such that xn be-
longs to the negative halfspace defined by H .

The triangulations computed by Theorem 5 are cal-
led lexicographic or pushing.

x5 x5

x6

Figure 2: A lexicographic triangulation of a cone in
dimension 4

Applied algorithmically, both theorems require a
double loop, and especially the rapid growth of trian-
gulations in high dimensions forbids a direct applicati-
on of Theorem 5. We replace it by a hybrid approach
based on pyramid decomposition: instead of computing
all the intersections σ ∩ H , σ ∈ ∆′, we triangulate
(H ∩C ′) +R+xn directly. Pyramid decomposition can
be applied both recursively and in parallel for severalH .

x5 x5

x6

Figure 3: Pyramid decomposition of Figure 2
Also the computation of support hyperplanes profits

from it. We refer the reader to Bruns, Ichim and Söger
[5] for a detailed description of the strategy applied by
Normaliz.

Reduction, simplicial cones and Hilbert
bases

It is characteristic for Hilbert basis algorithms that
they first compute a superset of the Hilbert basis and
then reduce it by discarding reducible elements:

Theorem 6 Let C ⊂ Rd be a pointed rational cone,
and let G be a system of generators of the monoid
M = C ∩ Zd. Then

Hilb(C) = {x ∈ G : x− y /∈ C for all y ∈ G, x 6= y}.

Fortunately the condition x − y /∈ C can be tested
quickly if the linear forms λi defining the support hy-
perplanes of C are known (and there are not too many
of them): x − y /∈ C ⇐⇒ λi(x) < λi(y) for at least
one i. Nevertheless the reduction algorithm wants to be
well-organized; see [3].

Suppose Σ is a triangulation ofC. Then the union of
the Hilbert bases Hilb(σ), σ ∈ Σ, is evidently a system
of generators for M , and it must “only” be reduced. So
it remains to explain how Hilb(C) is computed if C is a
simplicial cone.

Let v1, . . . , vd ∈ Zd be linearly independent, gene-
rating the simplicial cone C. Set

par(C) = {x : x = α1v1 + · · ·+ αdvd,

0 ≤ αi < 1, i = 1, . . . , d}.

The set par(C) is a semiopen parallelotope. It is a fun-
damental domain for the action of U = Zv1 + · · ·+Zvd
on Rd by parallel translation.

0

Figure 4: The parallelotope par(C) and the set E′

Theorem 7

1. The set E′ = par(C) ∩ Zd represents the residue
classes of Zd modulo the subgroup U .

2. #E′ = |det(v1, . . . , vd)|.

3. E = {v1, . . . , vd} ∪ E′ generates the monoid
C ∩ Zd.

The theorem shows that one can compute the ele-
ments of E′ by enumerating the residue classes of Zd
and division with remainder. We have taken great care
to make this process as efficient as possible.

The sets E′ are reduced “locally” for all simplicial
cones in the triangulation, and then their union is redu-
ced “globally”. This concludes the computation of the
Hilbert basis by the primal algorithm.

Normaliz applies a strategy of partial triangulati-
on which is based on pyramid decomposition. It tries to
avoid the triangulation of those pyramids that can on-
ly yield previously known Hilbert basis elements. See
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Bruns et al. [2]. Often partial triangulation has an over-
whelming effect.

With notation as above, let L be the monoid gene-
rated by v1, . . . , vd. Then

⋃
x∈E′ x + L is a disjoint (!)

decomposition of the monoid M = C ∩ Zd, and this
allows one to write down the Hilbert series of M imme-
diately:

HM (t) =

∑
x∈E′ : tdeg x

(1− tg1) · · · (1− tgd)
,

gi = deg vi, i = 1, . . . , d.

The next step is not so easy, since a general cone is not
the disjoint union of the simplicial cones in a triangulati-
on. Fortunately there exist a disjoint decomposition into
semiopen simplicial cones, and their Hilbert series are
almost as easy to compute as those of closed simplicial
cones. For the details we refer the reader to [5].

Use of Normaliz
Normaliz is implemented as a front end, called

normaliz, and the kernel libnormaliz. The latter
is a C++ class library and serves as an API. It uses GMP
for infinite precision arithmetic and a small part of the
Boost library. Parallelization is based on OpenMP. We
provide binaries for Linux, MacOS and MS Windows.

The communication with the frontend normaliz
is via an input file. Normaliz then returns the compu-
tation results in one or several output files. There is a
multitude of input types for generators, equations, ine-
qualities, congruences and gradings.

The computation goals and several other options can
be set on the command line or in the input file. In par-
ticular, the computation goals can be restricted, for ex-
ample to the support hyperplanes, to the lattice points in
a polytope or the multiplicity. Normaliz tries to do its
computation in 64 bit arithmetic, and if this precision
fails, it automatically switches to infinite precision.

Normaliz has interfaces to CoCoA, GAP, Macaulay
2, polymake and Singular. Especially the GAP interface
is very extensive, and at present GAP is the best environ-
ment for interactive access to Normaliz. The GUI jNor-
maliz (by Vicinius Almendra and Bogdan Ichim) is also
very helpful.

Of course Normaliz has found many applications in
the areas for which it has been made, commutative al-
gebra, toric geometry, polytope theory and integer opti-
mization. But since it is a solver for linear diophantine
systems, it can be applied everywhere where such sys-
tems must be solved. A prime example is Burton’s topo-
logical package Regina. The very efficient triangulation
algorithm is applied in the package SecDec by Borowka
et al. for the computation of multiscale integrals.

Normaliz has an offspring NmzIntegrate that com-
putes weighted Ehrhart series and integrals of polyno-
mials over rational polytopes [7].

Performance data of Normaliz can be found in [5].

History
The first version of Normaliz was developed by the

author and his PhD student Robert Koch as a C program
in 1998–2001 (see [6]). As the implementation did not
allow any extensions, Normaliz was transferred to C++
by Bogdan Ichim in 2007–2008. On this basis the pre-
sent code has been written by Christof Söger and the
author since 2009. In 2014 Richard Sieg joined the team
and made some contributions. The team is also sup-
ported by Tim Römer. The present published version is
3.1.1.

The first interface to Normaliz was the Singular li-
brary written by the author in 2002. The Macaulay 2
package was developed by Gesa Kämpf, and we owe
the GAP interface to Sebastian Gutsche, Max Horn and
Christof Söger. The CoCoA interface is due to John Ab-
bott, Anna Bigatti and Christof Söger.

The list of references below has been restricted to
primary references to Normaliz and its algorithms. We
trust that the reader will be able to locate all mentioned
software packages. The sources [1] and [5] contain ex-
tensive lists of references.
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References

[1] W. Bruns and J. Gubeladze, Polytopes, rings and K-
theory, Springer, 2009.

[2] W. Bruns, R. Hemmecke, B. Ichim, M. Köppe, and
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