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A NEW INVARIANT OF LATTICE POLYTOPES

WINFRIED BRUNS and TAKAYUKI HIBI

Abstract

The maximal degree of monomials belonging to the unique minimal system of monomial gener-
ators of the canonical module w (K [2]) of the toric ring K [Z] defined by a lattice polytope
will be studied. It is shown that if & possesses an interior lattice point, then the maximal degree
is at most dim & — 1, and that this bound is the best possible in general.

1. Introduction

The original motivation of the present paper is to investigate the maximal
degree of monomials belonging to the unique minimal system of monomial
generators of the canonical module of the toric ring defined by a lattice poly-
tope.

Let T = K[x, xfl, R x,;l, t,t71] denote the Laurent polynomial
ring in m + 1 variables over a field K. One associates eacha = (ay, ..., a,) €
Z" with the Laurent monomial x* = x" - - - xj" € T.Let # C R™ be a lattice
polytope of dimension d (we do not exclude d < m). One naturally identifies
P with P x {1} C R"*!. Let C(#) Cc R™*! denote the rational polyhedral
cone spanned by # x {1}. The roric ring of P is the subring

K[?] = K[x*" : (a,n) € C(P)NZ"]

of T. The algebraic and combinatorial study of toric rings is contained in
several books, for example in [1] and [5]. We set deg(x*t") = n foralla € Z™.
Then K[Z] is a positively graded domain. It is not necessarily generated by
degree 1 elements; if it is so, one says that & is integrally closed in Z™ or, in
other terminology, satisfies the integer decomposition property (IDP). (For the
normality of 2 one must replace Z" as the lattice of reference by the sublattice
generated by the lattice points in 2.)

The toric ring K[?] is a normal semigroup ring, and therefore Cohen-
Macaulay by Hochster’s theorem. By the theorem of Danilov-Stanley its ca-
nonical module w(K[Z]) is generated by those x*¢" for which (a, n) is in
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the (relative) interior of C(£). Let G(w(K[2])) denote the unique minimal
system of monomial generators of w(K[%]). We study the maximal degree
of monomials belonging to G (w(K[Z])). Among several results, especially
Corollary 4.4 says that, if a lattice polytope of dimension d > 2 possesses an
interior lattice point, then the maximal degree of monomials in G (w(K[Z2]))
is at most d — 1. Furthermore, the upper bound is best possible (Corollary 5.4).

Normaliz [3] was helpful to the preparation of the present paper. The meth-
ods used below are inspired by those in [1, Section 1.2].

Instead of Z™ one can start with a free abelian group M as is common in
toric geometry. However, since our target is convex polytopes themselves, in
the present paper, we work in the frame of Z.

2. Reduced Z-degree

In the following we will often switch from a polytope  C R™ to # x {1} C
R”*! without changing the name, and we may also identify monomials and
lattice points.

Recall that a convex polytope # C R”™ of dimension d is a lattice polytope
if each vertex of & belongs to Z". Let

M(P) = Z Z,x CC(P)

xXe(Px{1})NZm+!

be the semigroup generated by (2 x {1}) N Z"™*!. Furthermore, let Int C ()
denote the interior of C(2) and M*(P) = Int C(P) NZ"+!. As already said,
the monomials associated with the lattice points in M* (%) span the canonical
module of K[Z].

In accordance with the degree of monomials introduced above, the degree
of y = (¥, ..., Ya» Ym+1) belonging to C(P) N Z" ! is deg y = y,41. Each
y € M*(&P) can be expressed as y = z + w with z € M*(P) and w € M(P)
in such a way that z has minimal degree for all possible choices of w. The
reduced P-degree of y is

rdegy =rdeg, y = degz.

One says that y € M*(2P) is M (P)-irreducible if rdeg y = deg y. Clearly the
set G(2) of all M(P)-irreducible elements is the unique minimal system of
generators of M*(Z) with respect to the action of M (%) by addition.

In the present paper, the invariant, called the int*degree,

max{rdegy : y € M* (%)} (2.1)
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of 2 is studied. As indicated above, a bound for this invariant implies the same
bound for the minimal set of generators of the canonical module of K[Z].

3. Lattice simplices

First, the int*degree (2.1) of a lattice simplex is studied.

LEMMA 3.1. Let 0 C R™ be a lattice simplex of dimension d. Then

max{rdegy :y € M*(0)} <d + 1.

ProoOF. Let xo, x1, ..., xg be the vertices of . Each y € M*(%) is ex-
pressed uniquely as y = Z?:o gix; witheachg; > 0.Letq/ = ¢; — [¢; — 17.
Then O < ¢; < 1. One has y = z + w, where

d
z= Zq;xi, w = qu; — 1x;.
i=0

Since degz <d + 1,one hasrdegy < d + 1, as desired.

A lattice simplex o C R™ is said to be empty if 0 N Z™ coincides with the
set of vertices of o. Nontrivial empty d-simplices exist for all d > 3; see [2,
Remark 2.55].

LEmMMA 3.2. Let 0 C R™ be a lattice simplex of dimension d. If o is

nonempty, then
max{rdegy :y € M*(0)} <d.

ProOOF. Let xg, x1, ..., x4 be the vertices of o. The proof of Lemma 3.1
says that y € M* (o) is M (o )-irreducible if and only if

d

y=Y ax, 0<qoq1....qa < 1. 3.1)
i=0

Our work is then to show that y cannot be M (o )-irreducible if degy = d + 1.
Obviously, one has y = xg + - - - + x4 if deg y = d + 1. Since o is nonempty,
there exists x € o N Z"T! with x = Zflzﬂ rix; witheach O < r; < 1 and
Z?:ori = 1.Since 0 < r; < 1 foralli, one has y — x € M*(c). Thus y
cannot be M (o)-irreducible.

LEMMA 3.3. Let 0 C R™ be a lattice simplex of dimension d and x¢, x1,
..., Xg the vertices of 0. If o is empty, then

rdeg(xo + -+ x4) =d + 1
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and, for all y € M*(o), one has

rdegy # d.

ProOOF. Since o is empty,
M(o)=Zixo+ - +Zix4

and xo, ..., x4 are linearly independent. Thus (xo 4+ - - - + x4) — w & M*(0)
for all nonzero w € M (o), and xy + - - - + x4 is M (o )-irreducible.

Now, suppose that there exists y € M* (o) withrdeg y = d whichis M (o)-
irreducible. Then y is of the form (3.1), (xo + - - - + x4) — y is of degree 1 and
belongs to C(o) N 7"+ Hence (xo + - - - + x4) — y must be a vertex of o,
say, xo. Thus y = x| + - - - + x4, which cannot belong to M* (o).

4. Lattice polytopes
Now we study the int*degree (2.1) of a general lattice polytope.

THEOREM 4.1. Let P C R™ be a lattice polytope of dimension d.
(a) One hastdegy <d + 1forall y € M*(P).
(b) The following conditions are equivalent:
(1) P is not an empty simplex;
(ii) rdegy < d forall y € M*(P).

PrOOF. Let X be a lattice triangulation of &. In other words, X is a trian-
gulation of & for which each o € ¥ is an empty simplex, and consequently,
each x €  NZ" is a vertex of some 0 € X. Let ¥’ denote the subset of
% consisting of those 0 € X for which (o \ o) N 9P = @. (3 denotes the
relative boundary.)

Since 2 is the disjoint union of o\ do witho € X, itfollows that Int C (%) is
the disjoint union of Int C(¢') with o € ¥’. Thus (a) follows from Lemma 3.1.
On the other hand, (ii) = (i) in (b) follows from Lemma 3.3.

Now, in order to prove (i) = (ii) in (b), suppose that y € M*(%) belongs
to Int C(0) with o € ¥’. One may assume that dim o = d. Since rdeg, y <
rdeg, y < d+1,itisenoughtoexcluderdeg, y =d+1.Letrdeg, y =d+1.
Then y = xo +x; + - - - + x4, Where xg, x1, ..., x4 are the vertices of o. Since
& is not an empty simplex, one has #? # o, which guarantees the existence of
afacett of o witht\ 91 C P\ 0P. Let, say, xg € 7. Since (t \dt)NIP =,
it follows that x; + -+ - + x4 € Int C(#). Thus y = xo + (x1 + - - - + x4) and
rdeg y < d, a contradiction.

When (2 \ 0P) N Z" # @, the invariant (2.1) can be improved.
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THEOREM 4.2. Let # C R™ be a lattice polytope of dimension d > 2 and
suppose that (P \ 0P) NZL" £ (). Thenrdegy < d — 1 forall y € M*(P).

In order to prove Theorem 4.2, a special lattice triangulation using interior
lattice points effectively is required.

LEMMA 4.3. Let P be a lattice polytope with an interior lattice point. Then
P has a lattice triangulation X for which o C 09 if all vertices of o are in
0.

PrOOF. Let A be a lattice triangulation of 3% and x an interior point of
%. Then one defines the triangulation X’ of # by A U {conv(o,x) : 0 €
A}. Finally X is obtained from X’ by stellar subdivision with respect to the
remaining interior points of & in an arbitrary order.

PrOOF OF THEOREM 4.2. Let X be a lattice triangulation constructed in
Lemma 4.3. In particular, every o € X with (o \ do) N 3P = { possesses a
vertex belonging to (# \ 0#) N Z". Let y € M*(9) belong to o \ do with
o € X. Lety = Z?:o rix;, where xo, ..., x, are the vertices of o, where
X0 € (P\OP)NZL" and whereq < d.Lets; =r;—[r; —1].Then0 < s; < 1
fori =0,1,...,q and

q q
y= Zsixi + Zf"i — 1xi.
i=0 i=0

Assume first that s < 1 and yy = Z?:o six; € M*(P). Then degyg =
Z?:o s; < g < d.Thus, by using Lemma 3.3, one has rdeg yy < d. Finally, if
so = 1, then ry is a positive integer and

q
y =X+ [(ro — Dxo + Zrix,»].

i=1
Thus rdegy = 1.

COROLLARY 4.4. Let P be a lattice polytope of dimension d and K[2P] its
toric ring. Then the maximal degree of monomials belonging to the unique
minimal system of monomial generators of the canonical module of K[P] is
bounded by d.

If P possesses an interior lattice point, it is bounded by d — 1.

REMARK 4.5. The bound in Corollary 4.4 is the degree bound for the min-
imal system of generators of the canonical module with respect to the sub-
algebra generated by the degree 1 elements of the toric ring. In general the
minimal system of generators with respect to the full toric ring is smaller, as
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Proposition 4.6 below shows, but in general it is difficult to get information
on it. In the next section we will consider examples in which the toric ring is
generated in degree 1 and the bound in Corollary 4.4 is optimal.

Recall that a lattice d-simplex with vertices vy, ..., vy € R™ is unimodular
if its d-dimensional volume is 1/d!. An equivalent condition is that the lattice
vectors (vg, 1), ..., (vg, 1) generate a direct summand of 7"t orin algebraic
terms, that the toric ring is isomorphic to a polynomial ring in d + 1 variables,
generated by the monomials x™D, ... x®1 as a K-algebra. In particular a
unimodular simplex is empty.

PROPOSITION 4.6. Let o be an empty lattice d-simplex in R™.

(a) If o is unimodular, then the canonical module of K [o] is generated by
a single element of degree d + 1 as a K[P]-module.

(b) If o is non-unimodular, then the canonical module of K|o] is generated
by elements of degree < d — 1 as a K[P]-module.

Proor. For (a) it is enough to observe that every lattice point in Int C (%)
has a unique representation as a linear combination of (vy, 1), ..., (vg, 1) with
nonnegative coefficients in Z.

For (b) we use that there must exist a nonzero w = ¢o(vg, 1) + ... +
ga(vg, 1) € C(PYNZ" with 0 < q; < 1fori = 0,...,d. After our
previous results we must only exclude that y = (vg, 1) 4. .. 4 (vg4, 1) belongs
to the minimal system of generators. But this is clear, since y — w € Int C(£).

5. Examples

It is easy to find a d-simplex o with rdegx = d for all x € M* (o).

ExAMPLE 5.1. Define o by its vertices 0, 2e;, e; . . ., e, where ¢; is the ith
unit vector in R?. Then Int C (o) is generated by (1,...,1,d) € R4t with
respect to the action of M (o) by addition. Moreover the toric ring K[o] is
generated by the monomials x*¢ where a € M (o).

Now we give an example that shows the optimality of Theorem 4.2.

ExAMPLE 5.2. Let 2 C RY, d > 2, denote the polytope defined by the
system of inequalities
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It is known [4, Example 2.6(c)] that & is a lattice polytope of dimensiond > 2
whose toric ring is generated in degree 1. One has (1,...,1) €  \ 0. Let

vi=,...,1,G—Dd+i,i)eZ, i=1,2...,d—1.

Then y; € M*(P) with degy; = i.
LEMMA 5.3. Each y; is M(P)-irreducible.
PrOOF. Let y; = z + w with z € M*(#) and w € M(P). Let

z=(,...,1L,a,j), w=(0,...,0,b,k).

Then
d—D+a<jd+1), b<kd, i=j+k.

Thus
i—-Dd+i=a+b<jd+1)—d-1)+kd=G—-1d+ (G +1).

Hencei < j + 1, a contradiction.
COROLLARY 5.4. One has {rdegy : y € M*(?)} ={1,2,...,d — 1}.

The above observation shows that Theorem 4.2 cannot be improved even if
one replaces the action of M (Z) by that of the semigroup C (%) N Z"*+!: the
two semigroups coincide for 2.
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