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Cross-linking of chloroplast F,F, -ATPase subunit E to y without effect on activity 
E and y are parts of the rotor 

Birte SCHULENBERG, Frank WELLMER, Holger LILL, Wolfgang JUNGE and Siegfried ENGELBRECHT 
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Cys residues were directed into positions 17, 28, 41 and 85 of a Cysb--+Ser mutant of subunit E of 
spinach chloroplast F,,F, ATP synthase. Wild-type and engineered E were expressed in Escherichia coli, 
purified in the presence of urea, refolded and reassembled with spinach chloroplast F, lacking the E 

subunit [F,(-e)]. Cys-containing c variants were modified with a sulfhydryl-reactive photolabile cross- 
linker. Photocross-linking of  c to F,(-E) yielded the same SDS gel pattern of cross-link products indepen- 
dent of the presence or absence of MgZ+ . ADP, phosphate and Mg” . ATP. t‘ (wild type) [Ser6,Cys28]~ 
and [Ser6,Cys411c were cross-linked with subunit ;’. With chloroplast F,,F, the same cross-link pattern 
was obtained, except for one extra cross-link, probably between [Ser6,Cys28]~ and F,, subunit 111. [Ser6, 
Cysl71c and [Ser6,Cys85]~ did not produce cross-links. Cross-linking of E,  [Ser6,Cys28]~, [Ser6,Cys41]~ 
to j’ in soluble chloroplast F, impaired the ability of c to inhibit Ca”-ATPase activity. The Mg’+-ATPase 
activity of soluble F, (measured in the presence of 30% MeOH) was not affected by cross-linking E with 
;I. Functional reconstitution of photophosphorylation in F,-depleted thylakoids was observed with F, in 
which 1’ was cross-linked to [Ser6,Cys28]c or (Ser6,Cys41]c but not with wild-type E. In view of the 
intersubunit rotation of y relative to ( @ ) 3 ,  which is driven by ATP hydrolysis, 7 and E would seem to act 
concertedly a~ parts of the ‘rotor’ relative to the ‘stator’ (c$)?. 

Kejwords: F,,F, ATP synthase cross-linking ; mutation ; photolabeling; subunit c. 

ATP synthases synthesize ATP at the expense of proton-mo- 
tive [I -101 or sodium-motive force [ l l ,  121. The enzyme is 
composed of the membrane-embedded proton (sodium) channel 
F,, and the extrinsic, water-soluble F , .  F ,  of chloroplasts consists 
of five subunits, a (56 kDa), p (54 kDa), 7 (36 kDa), 6 (21 kDa) 
and E (15 kDa), in the stoichiometric proportion 3 : 3 : 1 : 1 : 1. Ac- 
cording to the crystal structure 1131, six nucleotide-binding sites 
are present at the a-B interfaces, three catalytic sites mainly on 
p and three non-catalytic sites on a. The mechanism by which 
ATP synthases may operate is beginning to emerge. The bind- 
ing-change model of ATP synthesis 12, 61 envisages a functional 
cycling between three cooperative catalytic sites. Its structural 
correlate is a rotation of some subunits relative to ( ~ L J ’ ) ~ .  This 
concept is supported “by the structure of F, from bovine heart 
mitochondria at 2.8-A resolution [13], and by electron-micro- 
scopy [14] and cross-linking data on Escherichin coli F,  [15, 
161. Recently the functional rotation of subunity y relative to 

has been time resolved by polarized spectrophotometry 
[17, 181. In an elegant approach it has been visualized directly 
by polarized fluorescence microscopy [19]. By application of a 
theory of stepped molecular motors [20], the data in [17, 181 
were shown to be compatible with F, acting like a three-stepped 
motor in ATP hydrolysis [18]. Published cross-linking data 115, 

Corr~.s~,oridence fo S. Engelbrecht, Universitat Osnabriick, Biophy- 

Fux: +49 541 969 2870. 
E-mciil: engel@uni-osnabrueck.de 
Ahbreviariom. F,,F,, F,,F,-ATPase : F,,, proton channel (membrane- 

embedded); F,, ATPase (wlublc); F,(-6), F, lacking the h’ subunit; F,(-c), 
F, lacking the c subunit; TFPAM-3, N-(4-azido-2,3,5,6-tetrafluoroben- 
ryl)-3-maleiniidopropionainide: TIDM/3. maleimidopropionic acid-(2- 
iodo-4-~t~iiluorometliyl-3H-diaairin-3-yl)benzylester. 

sik. Barharastr. 11. D-49069 Osnabriick, Germany 

16, 21 -301 give hints on the attribution of other subunits to the 
‘rotor’ and the ’stator’ portion of the enzyme. 

Subunits y, 6 and e function at the interfaces between the 
membrane-embedded F, and the extrinsic F,. They are instru- 
mental for the coupling between ion movements through F, and 
ATP release from F, [ l -10,  311. Surprisingly reconstitution and 
cross-linking experiments have led to the conclusion that 6 is 
placed at the periphery of F,, distal to the membrane 1321. More- 
over, the cross-linking of 6 to did not impair the hydrolysis 
activity of CF, [32]. In the context of intersubunit rotation this 
would identify 6 as part of the stator. 

Five e, each with a single Cys residue, were expressed in E. 
coli, namely wild-type E (containing Cys at position 6) [SerG, 
C y s l 7 1 ~ ,  [ Ser6,Cys28]c, [Ser6,Cys4l]s, [Ser6,Cys851~. Cys resi- 
dues were modified with photo-activable cross-linkers. Cross- 
linked products between E and F ,  lacking the e subunit [F,(-c)] 
or F,,F,(-t‘) were analysed with the activities of the cross-linked 
enzyme. In agreement with cross-linking data obtained with E. 
coli F, [28, 30, 331 we found that c containing single Cys resi- 
dues at positions 6, 28 or 41 were cross-linked with subunit y 
under all conditions tested. With F,,F,, [Ser6,Cys28]e probably 
was cross-linked with subunit 111 of CF,,. Cross-linking did not 
impair ATP hydrolysis by soluble F, (Mg’ ‘-ATPase activity) but 
it interfered with the ability of E to inhibit Caz+-ATPase activity. 
More importantly, ATP synthesis by cross-linked F,F, was not 
completely inhibited. In view of the recently shown intersubunit 
rotation of y relative to (a/l)? [15- 19, 341 these findings identify 
E as part of the rotor of ATP synthases. 

MATERIALS AND METHODS 
Materials. Enzymes and reagents for molecular biology 

were obtained from AMS Biotechnology, Bethesda Research 
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Laboratories, Boehringer-Mannheim, and New England Biolabs. 
Chromatographic media were from Merck and Pharmacia Bio- 
tech, ultrafiltration membranes (YM 10) from Amicon, electro- 
phoresis equipment from Pharmacia Biotech (PhastSystem). 
5,5’-dithiobis(2-nitrobenzoic acid) (Ellman’s reagent) was ob- 
tained from Pierce, N-(4-azido-2,3,5,6-tetrafluorobenzyl)-3- 
maleimidopropionamide (TFPAM-3) [35] from Molecular 
ProbeslMoBiTec and maleimidopropionic acid-(2-iodo-4- 
(trifluoromethyl-3H-diazirin-3-yl) benzylester (TIDMM) [36] 
from Photoprobes. 

Plasmids, bacterial strains and molecular genetics. We 
have cloned the gene for spinach E into PET-3d 1371 and ex- 
pressed the protein in E. coli strain BL21(DE3) [38]. Mutant 
recombinant E subunits were obtained by synthesizing mutagen- 
esis primers followed by two consecutive PCR cycles, one to 
introduce the mutations into the nucleotide sequence and the 
other to obtain full-length genes, followed by transformation and 
expression [39]. Prior to introducing further Cys residues, the 
one occurring in wild-type e was changed to Ser. Upon expres- 
sion, recombinant spinach E precipitated into inclusion bodies 
and was further purified in the presence of 8 M urea, 5 mM 
dithiothreitol, SO mM Mes/NaOH pH 5.5, by cation-exchange 
chromatography on Toyo Soda TSK CM-650(S) [38]. Chroma- 
tographic behaviour and yields were similar for the six proteins 
(12-24 mg purified protein/500 ml culture). The electrophoretic 
mobilities of the e variants were the same. Nucleotide sequenc- 
ing 1401 proved the expected sequences. 

Chemical modification. Chemical modification with 
TFPAM-3 or TIDM/3 was carried out after gel filtration of e 
(100 pM) against 8 M urea, SO mM Mops, pH 7, immediately 
followed by addition of 200 pM TFPAM-3. The reaction pro- 
ceeded at room temperature over night in the dark. The reaction 
was terminated by addition of 1 mM N-acetyl-cysteine, and ex- 
cess reagent was removed by gel filtration against 8 M urea, 
25 mM Tris/HCI, pH 7.8. Initial cross-linking trials were carried 
out by diluting E (dissolved in 8 M urea) directly into solutions 
containing F,. Residual urea up to 1 M did not interfere with 
ATP hydrolysis activity. 

Refolding of e and enrichment of cross-linked F,. e was 
refolded prior to binding to F,(-E). This followed the procedure 
developed by Cruz et al. [41]. c (dissolved in 8 M urea) was 
diluted tenfold into 33% glycerol, 2.5% ethanol, 16 mM Trisl 
HCI, 6.25 mM 2-mercaptoethanol, pH 8.0. F,(-E) was added 
(molar ratio of e/CF = 5 :  I), and the resulting solution was gel 
filtered (Sephadex G-50) to decrease the concentrations of glyc- 
erol and ethanol and subjected to anion-exchange chromatogra- 
phy [Toyo Soda TSK DEAE-650(S), 25 mM Tris/HCl, pH 7.81. 
This served to concentrate the sample and to remove surplus e. 
After illumination, the samples were reduced by addition of 
10 mM dithiothreitol, 1 mM MgATP was added and after 2 h the 
sample was chromatographed [Toyo Soda TSK DEAE-650(S), 
25 mM Tris/HCl, 22 mM Mega 9, pH 7.81. Elution was carried 
out until the salt concentration of the linear gradient (0- 
400mM NaC1) reached 150mM. At this concentration the 
buffer was changed to the same composition but without the 
detergent and the gradient was continued. This procedure largely 
removed subunits 6 and c [42] except those e molecules that 
were cross-linked with y. Subunit 13 was substituted thereafter by 
addition of 1 mol &no1 F,(-d). 

The cross-linker was photoactivated either by 10 min illuini- 
nation in an ultraviolet-transilluminator (=312 nm) or by expo- 
sure to 1000 flashes at 50 Hz, 20 s, SO0 mJ/cm2 from Nd-YAG 
laser (Coherent) at 357 nm. Monochromatic laser excitation was 
instrumental in avoiding non-specific protein breakdown caused 
by the spectrally wider ultraviolet illumination. 

SDS electrophoresis was carried out with the Pharmacia 
Phast System in gradient gels (from 8 % to 25 % polyacrylamide) 
stained with silver/silicotungstic acid [43]. Westem blots were 
carried out in the Pharmacia Phast System described previously 
[42]. Secondary antibodies were peroxidase-carrying anti-rabbit 
IgG from Boehringer, which were detected by chemilumines- 
cence. Monospecific polyclonal primary antibodies directed 
against spinach chloroplast F, subunits were obtained in couper- 
ation with J. Buschmann and Prof. Dr R. J. Berzborn, Ruhr Uni- 
versitat Bochum, with recombinant a, /?, y and E pET3a/d expres- 
sions in E. cnli [38, 441 as antigens. 

Preparation of thylakoids [45], of F,-depleted thylakoids by 
EDTA treatment [46] and of NaBr-treated thylakoids [47] were 
performed according to published procedures. F, and F, lacking 
6 and c [F,(-&)] were obtained by chromatography as described 
148, 491. Reconstitution of F,,F, in F,-depleted thylakoids, ATP 
synthesis by phenazine-methosulfate-mediated cyclic photo- 
phosphorylation and measurement of ATP were carried out as 
described [50]. 

The procedure to obtain cross-linked F,F, was as follows. 
F,(-e) was substituted with a 20-fold molar excess of TFPAM- 
3-modified c. NaBr-treated spinach chloroplasts (1471, 300 pg 
chlorophyll) were reconstituted with 300 pg of F , ( - E )  + e in the 
presence of 10 mM MgC1,. After washing to remove unbound 
protein, the samples were illuminated for 10 min at 312 nm on 
a transilluminator followed by extraction of the reconstituted 
membranes with 0.4 M sucrose, 20 mM Tricine/NaOH, 5 mM 
MgCl,, 0.4 M (NH,)SO,, 0.2 mM ATP, 1 % (masslvol.) sodium 
cholate, 50 mM dithiothreitol, 60 mM n-octyl-glucoside, pH 8.0 
[51, 521. 

Measurement of Ca’+-ATPase and Mg’+-ATPase activities 
of soluble F,, phosphate assays [42,49, 531, and protein determi- 
nation [54] were performed according to published procedures. 
Protein determinations [54] overestimated concentrations of t‘ 
by 18% (as determined by amino acid composition) and were 
corrected accordingly. 

Homology-building and graphical manipulations (‘docking’) 
were carried out with the programs WhatIf [55] and 0 [56] on 
DEC a and Evans & Sutherland ESV workstations. 

RESULTS 

Cross-linking of e with F, and F,F,. The E proteins were modi- 
fied with TFPAM-3 [3S] or with TIDM/3 [36] in the presence 
of urea. Since we suspected the high concentration of urea to 
interfere with chemical modification, the number of Cys resi- 
dues was titrated with Ellman’s reagent [5,5’-dithiobis(2-nitro- 
benzoic acid)] before and after modification with the cross-link- 
ing reagent. Table 1 shows the results and reveals that all E vari- 
ants (except wild-type c )  contained the expected single Cys resi- 
due, which reacted with TFPAM-3 to a large extent. 

All E variants (including wild-type E )  inhibited the Ca*+- 
ATPase activity of soluble CF, to the same extent, before and 
after modification with the cross-linking reagents. A 20-fold mo- 
lar excess of E was required to achieve greater than 90% inhibi- 
tion of Ca2+-ATPase activity if c was dissolved in 8 M urea and 
diluted directly into the F, solution. Prefolding e yielded around 
40% soluble c, which inhibited Ca2+-ATPase activity by greater 
than 90% at fourfold molar excess. 

Figs 1 and 2 document the cross-link products of wild-type 
and engineered E after modification with the first function of the 
cross-linker, incorporation into soluble F,(-E) and photolysis to 
activate the second function of the cross-linker. TFPAM-3 and 
TIDM/3 yielded the same results. Fig. 1 shows a silver-stained 
SDS gel (bands of the the cross-linked product are barely visible 
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Table 1. Titration of Cys residues in subunit E with Ellman’s reagent before and after modification with TFPAM-3. E samples were gel 
filtered against 6 M guanidinium hydrochloride, SO mM Tris/HCI, pH 8.0, before mixing with reagent. After incubation for 5 min, the absorption 
increase at 412 nm was determined spectrophotometrically. The amount of liberated thionitrobenzoate (TNB) was calculated using an E~~~ of 
13700m-’ cm-I. 

Protein Amount of e Before TFPAM-3 treatment After TFPAM-3 treatment 

amount of TNB ratio of TNB/c amount of TNB ratio of TNB/E 
liberated liberated 

nniol nmol 

Wild-type e 
[Ser6]~  
[Ser6,Cysl7]c 
[Ser6,Cys28]e 
[Ser6,Cys41 Ic 
ISer6,Cys85lc 

10.2 9.8 0.96 1.1 0.21 
12.2 0 0 0 0 
4.7 4.2 0.89 0.5 0.11 

15.0 13.0 0.87 1.7 0.11 
7.7 6.0 0.78 0.6 0.08 

11.9 8.2 0.69 0.9 0.08 

1 2  3 4  5 6 7 8 9 

Y- 

6- 
E-  

Fig. l. SDS electrophoresis of chloroplast F , ( - E )  complemented with 
TFPAM-3-modified E proteins and photolyzed on a transilluminator 
at 312 mn. Pharmacia Phast gel (8% to 25% polyacrylamide) stained 
with silver/silicotungstic acid [43]. 0.3 pg protein was appliedllane. Lane 
1, F, (not illuminated); lane 2, F, (illuminated); lane 3, F,(-E) (not illumi- 
nated); lanes 4-9, illuminated samples of F,(-e) substituted with wild- 
type t‘, [Ser6]c, (Ser6,Cys17]~, [Ser6,Cys28]c, [Ser6,Cys41]e and [Serh, 
Cys85]~, respectively. 

A 
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51 - 
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1 2 3 4 5 6 1 2 3 4 5 6  
Fig. 3. Western blot of illuminated chloroplast F,F, samples (pre- 
pared as outlined in Materials and Methods). 0.3 pg proteinllane was 
applied. (A) Primary antibodies directed against spinach F, c (diluted 
1 :S000); (B) primary antibodies directed against spinach F, j. (1:1000). 
Visualization of IgG was by peroxidase-carrying secondary antibodies 
and cheniiluminescences (exposure for 30 s). Lane 1-6, F,(-c) substi- 
tuted with wild-type c, [Ser6]e, [Serd,Cysl7]~, [Ser6,Cys28]e, [Ser6, 
Cys41]c and [Ser6,Cys85]~, respectively. 
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Fig. 2. Western blot of illuminated substituted chloroplast F , ( - E )  sub- 
stituted with TFPAM-3-labeled E. 0.3 pg proteinkine were applied. 
(A) Primary antibodies directed against spinach F, c (diluted 1 :5000); 
(B) primary antibodies directed against spinach chloroplast F, 7 
(1 : 1000). Visuali7ation of IgC was by peroxidase-carrying secondary 
antibodies and chemiluminescences (exposure for 30 s). Lanes 1-6, 
F,(-c) substituted with wild-type c, [Ser6]~, [Ser6,Cysl7]e, ISer6, 
Cys28]c, [Serb,Cys4l]c and [Ser6,Cys85]c, respectively. 

underneath the band of subunit at -54 kDa) and Fig. 2 the 
respective western blots with monospecific rabbit antisera di- 
rected against spinach chloroplast F, y and E. Wild-type c, [Serb, 
Cys281e and [Ser6,Cys41]~ were cross-linked exclusively with 
subunit y and [Ser6,Cys28]c and  [Serb,Cys85]& were not cross- 

- €  

1 2 3  1 2 3  1 2 3  
Fig. 4. SDS electrophoresis and western blot of enriched, cross- 
linked chloroplast F,. (A) Silver-stainded samples; (B), western blot 
with anti-8 IgG; (C) western blot with anti-]) IgC. Conditions were as 
described in Figs 1 and 2. Lane 1-3, F, containing y cross-linked to 
wild-type e, [Ser6,Cys28]c and [Ser6,Cys41]~, respectively. 

linked at all. This pattern was the same in the absence and pres- 
ence of ADP, phosphate and ATP. Fig. 3 shows western blots 
obtained with F,,F,. Modified c was bound to solubilized F,(-e). 
The complemented F, was rebound to F,-depleted thylakoids, 
followed by ultraviolet illumination of the reconstituted mem- 
branes to activate the cross-linker. Except for an additional band 
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2 n o - h  

Fig. 5. Correlation between silver-staining intensity of isolated sub- 
unit E and pixel (RGB) values (0, 0,O = black; 255,255,255 = white). 
0.3-pl samples were subjected to SDS electrophoresis in a Pharmacia 
PhastSystem gel (8% to 25 % polyacrylamide) and silver stained [43]. 

Table 2. Composition of cross-linked F, after enrichment by chroma- 
tography. SDS gels were stained [43] and photographed by a digital- 
image processing unit. Relative intensity values for the the bands repre- 
senting E were measured with the public domain program xv (available 
from ftp.cis.upenn.edu :/pub/xv). 

F, j ,  cross-linked to Relative intensity of 

cross- non-cross- FI(-e) 
linked linked 
sample sample 

wild-type E 

[Ser6,Cys28]e 
[Ser6,Cys4l]e 

48 44 8 
48 44 8 
70 24 6 

at around 25 kDa in the anti-&-western blot with [Ser6,Cys28]~ 
(Fig. 3), the cross-link pattern was unchanged in comparison 
with that obtained with soluble F,. The location of the additional 
spot indicated an [Ser6,Cys28]e-III cross-link product. Attempts 
to prove this interpretation, however, were unsuccessful due to 
the lack of suitable antibodies. 

The activity of cross-linked F,. The activity of F,(-c) reconsti- 
tuted with engineered or wild-type E followed by cross-linking 
was studied by the ability of soluble, cross-linked F,, to hy- 
drolyse ATP, and by the degree of reconstitution of ATP synthe- 
sis in F,-depleted thylakoid membranes, which were recombined 
with cross-linked F,. Since the cross-link yields were low, cross- 
linked F, was enriched by chromatography. Fig. 4 shows the re- 
sulting preparations of F, in which y is cross-linked to wild-type 
E ,  [Ser6,Cy~28]~ or [Ser6,Cys41]e as seen in SDS electrophore- 
sis after silver staining, and in western blots with antibodies di- 
rected against spinach chloroplast F, y and e. The cross-link 
product wild-type E with y migrated in two distinct bands, which 
were reactive with antibodies against E and y but not with those 
against a or p. 

The procedure resulted in nearly quantitative separation of 
FI(-&) from F,, but it did not fully resolve cross-linked F, and 
non-cross-linked F, still containing E. To determine the composi- 
tion of the samples, they were serially diluted and subjected to 
SDS electrophoresis, stained and photographed. The resulting 
pictures were evaluated with respect to residual subunit E (using 
pure E as a standard) and with respect to Y-E (using y as a 
standard) by measuring staining intensines. Fig. 5 shows a typi- 
cal set of data obtained with pure E .  The good correlation be- 
tween intensity and actual amount is evident. This allowed us to 
determine the proportion of cross-linked F, and non-cross-linked 
F, (still containing E) with sufficient confidence. Table 2 shows 

Table 3. MgZ+-ATPase activities of soluble F,( -E)  substituted with 
TFPAM-3-modified E, illuminated and chromatographed as outlined 
in Materials and Methods. Illumination was by a 312-nm transillumi- 
nator or by a 357-nm Nd-YAG laser. The Mg”-ATPase activities of F, 
and of F,(-E) were 28 pmol ATP hydrolysed . min-’ . mg-’ (U/mg), the 
Ca * ’  -ATPase activities were less than 2 U/mg for F, and 22 U/mg for 
Fi(-€). 

Sample Illumination method Mg”- Ca” - 
ATPase ATPaae 
activity activity 

% 

F , ( - E )  + E none 100 9 
Fi (-&I none 100 100 
F,(-t.) + E transillumination 30 26 
Fl(-c) + E laser 100 100 
F,(-E) + c laser 92 39 
F,(-E) + [Ser6,Cys28]~ laser 100 61 
F,( -E)  + [Ser6,Cys41]e laser 100 39 

Table 4. Reconstitution of photophosphorylation. NaBr-treated thyla- 
koids were reconstituted with F,(-c), which was substituted with 
TFPAM-3 -labeled [Ser6,Cys41]~ before illumination and after illumi- 
nation and enrichment. Cyclic photophosphorylation was measured in 
the presence of 50 pM phenazinemethosulfate. For further details see 
text. 

Addition Concentration Activity 

Pg110 P& 
chlorophyll 

None 

FI(-e) + [Ser6,Cys41]c 
before illumination 1 

5 
10 
20 

after illumination 1 
5 

10 
20 

F , ( - E )  + [Ser6,Cys4l]c 

Fi(-€) 1-20 

FI(-c) + wild-type e 20 

pmol ATP . mg 
chlorophyll I h I 

0 

12 
109 
161 
257 

11 
104 
1.55 
196 

0 

206 

the result5 for F, containing y cross-linked to wild-type c, [Ser6, 
Cys281e or [Ser6,Cys41]&. 

Table 3 summarizes the Ca*+-ATPase and Mg”-ATPase 
activities of soluble, cross-linked F,. In view of the composition 
of the three samples (i.e. more than 90% E present, cross-linked 
to y or not cross-linked) one would have expected CaZ+-ATPase 
activities around 15% instead of 39% or 61%. The inhibitory 
activity of E upon Ca*+-ATPase activitiy was abolished to some 
extent after cross-linking F to y .  The MgZ+-ATPase activity was 
unaffected however. 

Table 4 shows the reconstitution of photophosphorylation by 
F,(-E) that was substituted with TFPAM-3 -labeled [Ser6, 
Cys41]e and of the enriched, cross-linked F, containing y cross- 
linked to [Ser6,Cys41]&. Reconstitution of photophosphorylation 
( ~ 8 0 % )  was not affected by the E-Y cross-link to an extent 
correlating with the extent of cross-linking (70%). Similar ex- 
periments with enriched samples containing y cross-linked to 
wild type e or [Ser6,Cys28]~ showed that the reconstitutive ef- 
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Fig. 6. Summary of cross-link data for spinach chloroplast and E. coli subunit E .  The amino acid alignment was obtained with WhatIf [ 5 5 ] ;  
identical residues are indicated by colons. The rows below the E. coli sequence show the secondary structure of E. coli E as calculated by the 
program DSSP 1651 from the c coordinates [57]. Residues that have been used in cross-linking are indicated with their target subunit. Asterisks 
indicate residues that were modified, but not cross-linked. The following two residues of E. coli c were disulfide bridged with the following residues 
of subunits rx,  Cys381 127, 291; and c Cys31 with Cys40, Cys42 and Cys43 of subunit c [21, 221. 
All other cross-links were obtained after (photo)chemical modification of the respective residues [23, 27, 283. 

and c of F,,F,: e CyslOX with n Cys411 and 

fectivity of F,(-x) +[SerG,Cys28]e was in the same range as 
with F, containing 11 cross-linked to [Ser6,Cys4l]c before, and 
after cross-linking and enrichment. The reconstitutive effectivity 
of F, containing y cross-linked to wild-type c amounted to only 
58% of the  effectivity of the non-cross-linked control, which in 
view of the content of non-cross-linked F, within the sample 
(44%) indicated that F, probably had lost its ability to function- 
ally reconstitute photophosphorylation. 

DISCUSSION 

We engineered one cysteine at a time into a Cys-free mutant 
of subunit E of spinach chloroplast F, at positions 17, 28, 41 and 
85. These cysteines, plus the one in wild-type E at position 6, 
served as anchors for the inaleiinide function of photo-activable 
cross-linking reagents. The aim was to gain information on the 
location of subunit E within F, and to reveal the functional con- 
sequences of cross-linking on ATP hydrolysis by F, and on ATP 
synthesis by F,,F,. 

The studies were complicated by that recombinant c precipi- 
tated into inclusion bodies upon overexpression and had to be 
modified with the cross-linker i n  the presence of urea since the 
refolded, soluble protein precipitated upon modification. In addi- 
tion. very low cross-link yields were obtained, which necessi- 
tated an enrichment of cross-linked F,. This was  possible to 
some extent by chromatography of irradiated samples. Anion- 
exchange chromatography of the reduced enzyme in the pres- 
ence of a detergent removes c from F, 142, 48, 631. F, and 
F , ( - E )  were base-line separated under these conditions. 

As a prerequisite for the presented studies, the biological 
activities of the E variants before and after modification with 
the cross-linking reagent were tested. Inhibition of Ca’+ATPase 
activity and reconstitution of photophosphorylation [in the pres- 
ence of F,(-E) were not affected by the modification of c, but 
without photoactivation of the cross-linker. This was taken as 
indication of the native-like rebinding of modified c to F,(-E). 

Fig. 7. Corey-Pauling-Koltun model of part of chloroplast F, show- 
ing subunit E (light grey) proposed to be located within F,. CF, was 
homology-modeled (WhatIf [ 5 5 ] )  into the published bovine mito- 
chondrial F, atructure [13], chloroplast F: was homology-modeled [55] 
into E. coli t. [57]. The plot was generated with 0 [56]. 

Structural and functional implications. Single cysteine vari- 
ants of subunit c,after modification with a Cys-specific cross- 
linking reagent, incorporation into F , ( - E )  and photoactivation of 
the second function of the cross-linker produced three classes 
of products : wild-type c and [Ser6,Cys41]~ were cross-linked 
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exclusively to subunit j l ,  [Ser6,Cys28]~ was cross-linked to y 
and probably also to subunit 111 of F,, and [Ser6,Cysl7]c and 
[Ser6,Cys85]e were not detectably cross-linked. 

Related cross-link data were obtained previously for subunit 
E of the E. coli enzyme [23-301. Our data complement and 
extend these results (Fig. 6). Since the crystal structure of bovine 
heart F, [ I  31 and a solution structure of E. coli E [57] are known, 
a modeling of subunit E into F, was attempted. To this end, the 
respective chloroplast polypeptide chains were homology-built 
into the known structures (with the program Whatlf 1551 fol- 
lowed by ‘docking’ of E to (with the program 0 1561). 
Fig. 7 shows a Corey-Pauling-Koltun model of the resulting 
structure (a Protein Data Bank-type file is available on request 
and can be used for visual inspection of the structure, by public- 
domain programs such as RasMol [58] ) .  Due to spacial restric- 
tions, there are not many possib es for such a venture. The 
cross-link data, the ‘accessible’ surface of y (only ~ 4 0 %  of the 
chloroplast y structure can be disclosed currently by homology 
modeling) and the shape of E only allow for two positions of E 

within (ap)g, which are related by a C2 symmetry. The decisive 
experiment allowing the relative orientation of E within F, to be 
restricted to these two possibilities was obtained with the E. coli 
enzyme: E. coli E can be disulfide bridged via residue 108 to 
both a and ,8 [26, 281. In an attempt to satisfy this condition F 

was placed such as to keep A106 close to ,5401, of chain a 
[I31 and E412 of chain d (chloroplast numbering; the C2-related 
position would have placed A106 close to ,5401 of chain c [13]. 

Although quite a number of cross-links between subunits E 
and y are now known ([lo, 28, 301, this work), the domain of y 
that is cross-linked to E is lacking in the picture. E and y must 
be intertwined to some extent, with a portion of y (equal to the 
size of E) covering most of one side of the large /)-barrel domain 
of E. Due to the length of the cross-linker (9 A) the two surfaces 
may not be interacting in situ. The resulting model, however, is 
in full accordance with fluorescence-resonance-energy-transfer 
data on the location of e within chloroplast F, [59]. 

The construction of the model shown in Fig. 7 was based 
upon the following assumptions: the solution structure of e (ob- 
tained by NMR [57]) resembles the struture of E bound to 
F,(-E) (the validity of this assumption is open) and the structures 
of subunits a, p, y and E are very similar between E. coli mito- 
chondria and chloroplasts. 

The three enzymes differ in several aspects. In the mito- 
chondrial enzyme the counterpart of E. coli E and chloroplast E 

probably comprises two proteins (mitochondrial subunits 8 and 
E ) .  In comparison with mitochondrial F, and E. coli F,, chloro- 
plast F, y contains additional stretches of amino acids, which are 
responsible for the redox regulation unique for the chloroplast 
enzyme [60]. In E. coli subunit c is indispensable for binding F, 
to Fo [61, 621 whereas in chloroplasts F,(-E) binds well to F,, 
[63]. Cross-linking yields in the E. coli enzyme were dependent 
on the nucleotide load [lo, 23, 26, 27, 351, whereas the chloro- 
plast enzyme behaved much more slackly in this respect (this 
work). 

These differences, however, may represent add-on features 
of the chloroplast enzyme, which probably do not justify to view 
chloroplast F ,  as completely different from mitochondrial or E. 
coli F,. The structural similarity between E. coli F, and chloro- 
plast F, seems warranted by the presence of functional chimeric 
constructs between them [38, 44, 661. The accordance of the 
cross-linking data reported here with those published for the E. 
coli enzyme [21-23, 27, 281 is reassuring in this aspect. 

Therefore, given that the two conditions are met, the 
following conclusion may be drawn: there is no way to place E 

underneath y [even if the a-helical domain of E changes its rela- 
tive position to the p-barrel domain upon binding to CFI(-e)l. 

As a result, the ‘stalk’ becomes highly asymmetrical. It is tempt- 
ing to visualize e and 1’ serving as connectors between F,, and 
F,, a rotatory element picking up and relaying into the F,  portion 
the torque that is generated in F,, by proton-motive force. 

If ATP synthesis is the exact reversal of ATP hydrolysis, the 
rotation of YE (and most likely subunit I11 of the channel portion) 
relative to I/II/IV/(@),l8 would be driving it. Then the two roles 
of &,inhibitory in hydrolysis and mandatory in synthesis, can be 
explained on pure mechanical grounds. 

In ATP synthesis, the proton-motive force would cause the 
clockwise rotation (viewed from the membrane) [19] of the c 
subunits, which are tightly coupled to E and y. y would relay the 
torque to F,. Unlike under ATP hydrolysis, there is no steric 
hindrance since E and y act concertedly and with a fixed, time- 
independent distance between the C-terminal helix-turn-helix 
domain of c and the C-terminal a-helical domain of the ‘empty’ 
p subunit. 

ATP hydrolysis, on the other hand, would be inhibited be- 
cause the counterclockwise rotation of y~ [I91 would be blocked. 
The C-terminal helix-turn-helix domain of E cannot rotate unhin- 
dered due to steric hindrance from the C-terminal-a-helical do- 
main of the ‘empty’ p subunit. 

This simple model is supported by findings of Kuki et al. 
1671 and preliminary data obtained with the chloroplast enzyme 
(Kirberich, S., Roelevink, M. and Engelbrecht, S.,  unpublished 
data). Shortened E ,  lacking the two C-terminal a-helices, sup- 
ported aerobic growth in the respective E. coli strains [67]. Simi- 
larly, chloroplast E-(1 - 89)-peptide together with F , ( - E )  reconsti- 
tuted photophosphorylation to a significant extent in comparison 
with full-length E but it lacked the ability to inhibit Ca’+-ATPase 
activity of soluble F, despite apparent binding to F,(-c). Other 
than envisaged by Dunn [68], this model assumes a rather rigid 
structure of at least the two domains of c. 

Subunit E inhibits Ca”-ATPase activity of soluble F ,  and is 
indispensable in photophosphorylation 1631. Both activities were 
inhibited to some extent after cross-linking of wild-type E, [Serb, 
Cys281e and [Ser6,Cys41]~ to subunit y. This might indicate 
requirement for some flexibility of 2 and E .  On the other hand, 
MgZ+-ATPase activities of the soluble enzyme were not affected 
at all by cross-linking, and even reconstitution of photophos- 
phorylation, which is the most demanding activity, in two of 
three cases was not inhibited to an extent that matched the extent 
of cross-linking. In view of the rotation of subunit y relative to 

which is driven by ATP hydrolysis [15-19, 341, y and e 
are probably corotating in ATP synthase. A decisive experiment 
by polarized absorption recovery after photobleaching, similar 
to our previous ones on the rotation of y during ATP hydrolysis 
[17, 181, is underway in our laboratory. 
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