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Abstract

Cyanobacteria and plants carry out oxygenic photosynthesis. They use water to generate the
atmospheric oxygen we breathe and carbon dioxide to produce the biomass serving as food,
feed, fibre and fuel. This paper scans the emergence of structural and mechanistic under-
standing of oxygen evolution over the past 50 years. It reviews speculative concepts and
the stepped insight provided by novel experimental and theoretical techniques. Driven by
sunlight photosystem II oxidizes the catalyst of water oxidation, a hetero-metallic
Mn4CaO5(H2O)4 cluster. Mn3Ca are arranged in cubanoid and one Mn dangles out. By
accumulation of four oxidizing equivalents before initiating dioxygen formation it matches
the four-electron chemistry from water to dioxygen to the one-electron chemistry of the
photo-sensitizer. Potentially harmful intermediates are thereby occluded in space and
time. Kinetic signatures of the catalytic cluster and its partners in the photo-reaction centre
have been resolved, in the frequency domain ranging from acoustic waves via infra-red to X-
ray radiation, and in the time domain from nano- to milli-seconds. X-ray structures to a
resolution of 1.9 Å are available. Even time resolved X-ray structures have been obtained
by clocking the reaction cycle by flashes of light and diffraction with femtosecond X-ray
pulses. The terminal reaction cascade from two molecules of water to dioxygen involves
the transfer of four electrons, two protons, one dioxygen and one water. A rigorous mech-
anistic analysis is challenging because of the kinetic enslaving at millisecond duration of six
partial reactions (4e−, 1H+, 1O2). For the time being a peroxide-intermediate in the reaction
cascade to dioxygen has been in focus, both experimentally and by quantum chemistry.
Homo sapiens has relied on burning the products of oxygenic photosynthesis, recent and
fossil. Mankind’s total energy consumption amounts to almost one-fourth of the global
photosynthetic productivity. If the average power consumption equalled one of those
nations with the highest consumption per capita it was four times greater and matched
the total productivity. It is obvious that biomass should be harvested for food, feed, fibre
and platform chemicals rather than for fuel.

Introduction

Cyanobacteria, algae and plants carry out oxygenic photosynthesis. They produce oxygen (O2)
from water and take up carbon dioxide (CO2) to yield biomass. Cell respiration reverses this
process. Oxygenic photosynthesis has formed the oxygen we breathe and most of the biomass
we use as food, feed, fibre and fuel. Solar driven oxygen evolution started very early in evolu-
tion. A dramatic rise of the atmospheric oxygen level (by more than four orders of magnitude),
the Great Oxygenation Event (GOE), dates 2.4 billion years back from now (Bekker et al.,
2004; Kump, 2008). Both geological (Planavsky et al., 2014) and genomic evidence
(Cardona et al., 2015) have suggested that ancestors of cyanobacteria might have started
oxygenic photosynthesis half a billion years before the GOE. The stabilization of land masses
and the emergence of land plants about half a billion years back from now caused another rise
of the atmospheric oxygen content. Photosynthetic produced biomass and oxygen have pow-
ered the vast emergence of animal life. The time window of Homo sapiens is just a blip on
these time scales. Its impact on the consumption of photosynthesis products is tremendous,
as will be discussed at the end of this paper.

Several authors have comprehensively reviewed the respective momentary status of knowl-
edge on the mechanism of oxygenic photosynthesis. They are cited in the text. The present
paper scans how our knowledge on this fundamental process has unfolded over the past 50
years. Freshmen may start by reading the excellent book on photosynthesis by Bob
Blankenship (Blankenship, 2014).

Figure 1 illustrates the present concept of the key elements of the primary processes of
photosynthesis in green plants (photosystem II (PSII), PSI, cytb6f and the adenosine triphos-
phate (ATP) synthase). It is meant as a scaffold for the reader when travelling through the
originally foggy, and then increasingly detailed and complicated terrain that follows.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

https://www.cambridge.org/qrb
https://doi.org/10.1017/S0033583518000112
mailto:junge@uos.de


Pioneering studies

Photosynthetic oxygen production from water

In 1772 Joseph Priestley reported a first systematic study on gas
turnover between plants and animals (Priestley, 1772). A mouse
confined in a sealed vessel suffocated if not backed up by a
plant. It has meant that the mouse produces ‘bad air’ and the
plant restores ‘vital air’. In modern terms, plants take up carbon
dioxide (CO2) and produce oxygen (O2), while animals inhale
O2 and exhale CO2. Hundred years after Priestley Theodor
Engelmann (Engelmann, 1881) introduced a less harmful bioas-
say for oxygen, namely the flocking behaviour of oxygen-loving,
motile bacteria around illuminated chloroplasts. It yielded the
first action spectrum of oxygenic photosynthesis (with typical
chlorophyll peaks). Half a century later the great biochemist
Otto Warburg (Nobel Prize 1931) studied by manometry the
turnover of O2 and CO2 in respiring cells and tissues (Warburg,
1922). Robert Emerson and William Arnold used his technique
to detect O2-production by illuminated algae (Emerson and
Arnold, 1932). They pioneered excitation of photosynthesis by
short flashes of light (duration some 10 µs). Varying both the rep-
etition rate of flashes and their energy they obtained two seminal
results (Emerson and Arnold, 1932). (i) The rate of oxygen evo-
lution is limited by a temperature-sensitive (dark) step of some
10 ms duration, and (ii) the maximum production per flash is
1 mol O2 per 2500 mol chlorophyll. The relevance of these find-
ings could only later be fully appreciated (see below).

The minimal balanced equation of oxygenic photosynthesis is
2H2O + CO2 = O2 + (CH2O). The substrate for oxygen produc-
tion, water or carbon dioxide, was under debate. Robin Hill stud-
ied photosynthetic oxygen production in freshly isolated
chloroplasts by another bio-assay, the spectral shift of added
oxy-/deoxy-haemoglobin. Upon ageing of chloroplasts both, oxy-
gen production and carbon dioxide consumption faded out. The
addition of ferric ions as oxidant restored oxygen production but
not carbon dioxide uptake. Hill took the decoupling of the former
from the latter as evidence that plants ‘do not evolve oxygen from
carbon dioxide’ (Hill, 1939). Using heavy oxygen as a tracer
Martin Kamen and collaborators found ‘the 18O/16O-ratio of
the evolved oxygen identical with that of the water’. The obvious
conclusion has been that O2 originates solely from water (Ruben
et al., 1941) (for a modern remake see Clausen et al. (2005a)).
Otto Warburg had meanwhile perfected the manometric moni-
toring the exchange of CO2 and O2 in photosynthesis and respi-
ration (Burk et al., 1951). Having observed a stimulating role of
bicarbonate on photosynthetic oxygen production he claimed
that oxygen results from bicarbonate and not from water
(Warburg et al., 1965). The origin of the stimulating effect of

CO2 on PSII that drove Warburg to this erroneous view, has
only been settled much later (reviewed by Govindjee and his col-
leagues (Shevela et al., 2012)) and the regulatory function of CO2

was detailed (Koroidov et al., 2014; Brinkert et al., 2016).

Electron transport, oxygen production, proton transport and
ATP synthesis

Lou Duysens (Duysens et al., 1956), Bessel Kok (Kok, 1956) and
Horst Witt (Witt and Moraw, 1959) started to characterize a
wealth of spectroscopic signatures of photosynthetic electron
transfer. Excitation with short flashes allowed resolving partial
reactions in time (Kok, 1956; Witt et al., 1961a). Two PSs operate
in series (Duysens et al., 1961; Witt et al., 1961b). PSII produces
oxygen and delivers electrons to PSI, which in turn provides
electrons for the reduction of CO2 (see Fig. 1). The rate limiting
step of the whole electron transport chain is located between
the two PSs. Its duration (about 10 ms) is compatible with the
one found for oxygen production by Emerson and Arnold
(Emerson and Arnold, 1932). The sensitizers of both PSs are
chlorophyll-a constructs, which have been coined after the wave-
length of their respective red absorption peak. P700 (Kok and
Gott, 1960) drives PSI and P680 (Döring et al., 1967) drives
PSII, respectively. These biophysical data were then not readily
appreciated by some biochemists. When Warburg was confronted
with Witt’s detailed reaction scheme in 1962, he mused: ‘Could
you tell us how the chemical mechanism of photosynthesis can
be described on the basis of your spectroscopic observations?’
Witt countered his eminent critic, the pioneer of oxygen detec-
tion, by observing that ‘it would be difficult to deduce the mech-
anism of a combustion engine based only on sniffing the exhaust’
(see Junge and Rutherford (2007)). From their then limited per-
spective both were of course right (see below).

At that time it had been accepted that the chlorophylls and
therewith the primary photosynthetic activity is embedded in the
tightly folded inner membranes of chloroplasts, forming thylakoids
(Menke, 1962). Peter Mitchell (Nobel Prize 1978) hypothesized a
new role of this inner membrane system of chloroplasts and like-
wise the cristae membrane of mitochondria (Mitchell, 1961,
1966). He envisaged that the membrane is proton tight such that
zigzagging electron/hydrogen transport generates a pH-difference
(Mitchell, 1961), and transmembrane voltage (Mitchell, 1966), in
sum coined as protonmotive force. The backflow of protons is con-
fined to the ATP synthase where it drives ATP-synthesis. Essentials
of Mitchell’s hypothesis were soon experimentally established for
the thylakoid membrane. André Jagendorf subjected broken chlo-
roplasts to an acid/base-jump (pH-jump) and obtained ATP
(Jagendorf and Uribe, 1966). The author with Horst Witt discov-
ered the electrochromic origin of certain absorption transients of
intrinsic chloroplast pigments (Junge and Witt, 1968). Upon exci-
tation with flashing light they observed very rapid voltage genera-
tion by both PSs and slower proton pumping (Schliephake et al.,
1968). Subsequent studies of the author with Bernd Rumberg
have revealed that the flash generated voltage decays in synchrony
with ATP synthesis (Junge, 1970; Junge et al., 1970). Titration of
the voltage decay with the extremely powerful ionophore gramici-
din revealed that the electrified membrane contains at least 105

chlorophyll molecules (Junge and Witt, 1968), i.e. more than 100
electron transport chains. This number was later raised up to
more than 107 chlorophyll molecules (Schönknecht et al., 1990).
In other words, the intricately folded thylakoid membrane within
a chloroplast forms one contiguous, i.e. simply connected sheet
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Fig. 1. Key proteins of the primary processes of photosynthesis in green plants (PSII,
PSI, cytb6f and the ATP synthase), electron transfer (red), proton transfer (purple)
and products (O2, NADPH and ATP) (Junge and Nelson, 2015).

2 Wolfgang Junge

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127



(Junge, 1977; Schönknecht et al., 1990). It implies that almost all
copies of the electron transport chain contribute driving force to
all copies of ATP synthase. The lateral separation of PSII and
PSI (and ATP synthase) in different areas of the folded thylakoid
membrane (Boardman and Anderson, 1964) apparently does not
impair their ability for concerted electron and proton transport.
Losses of the chemical portion of protonmotive force between lat-
erally separated proton pumps and ATP synthase were only later
discovered. They are minor both in mitochondria (Rieger et al.,
2014) and in chloroplasts (Sjoholm et al., 2017). Top efficiency
of ATP synthesis has apparently been sacrificed for the sake of
tight packing of the coupling membrane, both in chloroplasts
and mitochondria.

Photosystem II with the oxygen evolving complex (BC)

Four-electron chemistry of water oxidation linked to
one-electron photo-physics

In 1968 Anne and Pierre Joliot have lifted studies of photosyn-
thetic oxygen evolution to a kinetic level by introducing a rapidly
responding oxygen electrode (Joliot and Joliot, 1968). When they
excited dark adapted Chlorella cells with a series of short light
flashes oxygen production peaked at flash number 3 and contin-
ued with damped oscillations of period four (Joliot et al., 1969).
The release of oxygen occurs in 1 ms, i.e. a 10 times shorter time-
interval than the overall bottleneck of the full electron transport
chain (Emerson and Arnold, 1932). In 1970 Bessel Kok concluded
that PSII contains an accumulator of four positive ‘charges’ that
links the one-electron-progression of the photo-physical reaction
centre to the four electron/proton-abstraction from two molecules
of water to yield dioxygen (Kok et al., 1970). From there on, the
catalytic centre has been conceived as stepwise progressing in a
cycle over five oxidation states, S0 to S4. With S1 being the most
stable state in dark adapted material, oxygen is only produced
after three steps of the cycle during the transition S4→ S0. Two
most important features of this four-stepped mechanism were
soon recognized (see Renger (1977)): (a) the levelling of the
energy demand of the four successive one-electron abstractions
from water to match the fixed energy input provided by red
quanta of light, and (b) the control (by sequestration and/or
short live-time) of potentially harmful intermediates on the way
from water to dioxygen (‘cryptoradicals’; Renger, 1987). The
cleavage of water to produce dioxygen was expected to liberate
protons into the lumen of thylakoids. The stoichiometric H+/
e−-pattern over the four-stepped progression, S0→ S1→ S2→
S3→ S4 + O2 was 1:0:1:2 (Förster et al., 1981; Förster and Junge,
1985). For some time it was controversial between various labs
(reviewed in Lavergne and Junge, 1993). Different patterns were
observed in partially fragmented PSII-preparations. The seeming
ambiguity has later been settled in favour of a proton release pat-
tern of 1:0:1:2. It has required the discrimination by kinetic mark-
ers between transient electrostatic proton release/uptake at the
membrane periphery (membrane Bohr effect) and chemical pro-
ton production from the catalytic core of PSII (Haumann and
Junge, 1994) (see review in Junge et al. (2002)). It has been
early noted that the release of two protons during the terminal,
oxygen evolving reaction is kinetically biphasic with one proton
appearing at about 100 µs and the other one at 1 ms half rise
(Förster et al., 1981; Förster and Junge, 1985). The release of a
first proton appears as a primer for the terminal reaction cascade
involving four electron transfers (see Fig. 3 farther down).

George Cheniae established the necessity of manganese for oxy-
gen evolution (Cheniae and Martin, 1967, 1970). Ken Sauer’s lab in
Berkeley has focused on characterizing its function. Starting with
electron paramagnetic resonance (EPR) (Blankenship and Sauer,
1974), they turned with Mel Klein into X-ray spectroscopy
(Kirby et al., 1981a, 1981b) and, till today, into advanced X-ray dif-
fraction (see below). When exciting dark adapted chloroplasts with
repetitive flashes of light they detected by EPR that some manga-
nese was released into solution with period of four. It suggested
that manganese associated with PSII undergoes valence-changes
with a period of four (Wydrzynski and Sauer, 1980). From then
on it was accepted that manganese is involved in Kok’s ‘charge’
accumulator (reviewed in Sauer (1980)). When generating Kok’s
state S2 by excitation of dark adapted material with a single short
flash of light Charles Dismukes and Yona Siderer observed a mul-
tiline EPR-signal which they attributed to a mixed-valence pair of
manganese, Mn(III)Mn(IV), in a dimeric or tetrameric Mn-cluster
(Dismukes and Siderer, 1981). For quite a while this attribution has
been the stronghold for the valence of the manganese cluster dur-
ing the four transitions from S0 to S4.

Enrichment and purification of PSII: P680, the Mn-cluster
and tyrosine (Yz)

Further progress required enrichment if not purification of PSII.
Per Ake Albertson’s lab pioneered the isolation of PSII-
enriched membrane vesicles from spinach (Akerlund et al.,
1976; Andersson et al., 1977). A number of consecutive studies
demonstrated that the enrichment was facilitated by the intrinsic
segregation between PSII in the appressed portions and PSI in the
extended portions of stacked thylakoid membranes (Andersson
and Anderson, 1980, 1988).

Purification of a manganese containing, oxygen evolving PSII was
desirable. A first claim (Spector and Winget, 1979) was not generally
reproducible and probably fraudulent. A great step forward were
membrane fragments from spinach chloroplasts that revealed high
rates of oxygen evolution and were virtually uncontaminated by PSI
(Berthold et al., 1981). Theywere coined BBY-particles after their par-
ents, Berthold, Babcock and Yocum. The absolute content of PSII was
quantified via the previously found, and chemically still unidentified
EPR-signal II (Babcock and Sauer, 1973), then coined Z, supposedly
an electron donor to P680+ (Babcock and Sauer, 1975). In 1984 a fully
competent PSII-core particle from spinach was isolated by Demetrios
Ghanotakis with Gerald Babcock and Charles Yocum (Ghanotakis
et al., 1984b). It contained four Mn-ions and one Z per 250 chloro-
phyll molecules. In addition to the hetero-dimeric core proteins of
PSII, D1 and D2, and further proteins with antennae function
(CP43, CP47) the complex contained peripheral proteins of 17, 23
and 33 kDa molecular mass. The removal of the 17 and 23 kDa pro-
teins facilitated the access of external reductants to Z. It also impaired
oxygen production which was however reconstituted by added Ca
(Ghanotakis et al., 1984a, 1985a, 1985b).

At this time (i.e. before crystallization, BC) structural informa-
tion on the mutual arrangement of the four Mn-ions, and a role
of Ca in relation to the Mn-cluster was still lacking (for reviews
see Yocum, 1991; Debus, 1992).

Kinetics of electron transfer between P680+, Yz and the
Mn-cluster

P680 is photo-oxidized in less than 300 ps (Schatz et al., 1987,
1988). In PSII-preparations with small size of the antennae system
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the time of photon capture is shorter than in those with large
antennae complement. In other words, PSII hosts an energetically
‘shallow trap’ where many transfers of excitation between the trap
and its antennae complement precede the eventual charge separa-
tion (Schatz et al., 1988; Barter et al., 2001). P680+ is then reduced
in nanoseconds. For lack of time resolution in the earlier work the
reduction of P680+ was first detected in functionally impaired
PSII where it was much delayed compared to normal (Döring
et al., 1967). In likewise impaired material Gerald Babcock’s
group found that the slow reduction of P680+ kinetically matched
the oxidation of the EPR-visible radical intermediate, Z (Boska
et al., 1983). In fully competent, oxygen evolving PSII, on the
other hand, P680+ is reduced in nanoseconds as later found in
Horst Witt’s lab. The rate of P680+-reduction depends on the
state of Kok’s ‘charge accumulator’ before photon-absorption.
The half-rise time ranges around 20–40 ns when starting from
S0 and S1 and rises to about 300 ns when starting from S2 and
S3 (Brettel et al., 1984; Schlodder et al., 1984; Meyer et al.,
1989). According to its UV-difference spectrum the electron
donor to P680+ was identified as a tyrosine, and the rate of its oxi-
dation in nanoseconds matched the one for the reduction of
P680+ (Gerken et al., 1988). By site-directed mutagenesis the elec-
tron donor was eventually identified as tyrosine-161 on the
D1-polypeptide of PSII (Debus et al., 1988a, 1988b). It has
been coined Yz since then. While Yz is oxidized by P680+ in nano-
seconds, it is reduced by the Mn-cluster in micro- to milli-
seconds. The half-rise time of Yz

+-reduction and Mn-oxidation
depends on the state Si before photon absorption, namely 30,
110, 350 and 1300 µs when starting from S0, S1, S2 and S3, respec-
tively (Dekker et al., 1984).

Around 1990 the three players of oxygen evolution, namely
P680, Yz and a Mn4(Ca)Ox-entity, had been identified, and the
kinetic constants of electron transfer between them quantified.
The challenge was to elucidate the mutual arrangement of
P680/Yz/Mn4Ca, the role of Ca, and, of course, how the dioxygen
bond is formed.

Tentative structural models of the catalyst

The X-ray crystal structure of the reaction centre of purple bacte-
ria (BRC), the first of a membrane protein ever, was published in
1985 (Deisenhofer et al., 1985) (Nobel Prize to J. Deisenhofer,
R. Huber and H. Michel in 1988). It was soon evident that its sub-
units L and M share sequence similarity with D1 and D2 of PSII
(see Nitschke and Rutherford, 1991 for review). For quite a while
the bacterial reaction centre served as scaffold for discussing the
structure of PSII of oxygenic photosynthesis. Without any struc-
tural model of PSII proper, several labs tried to distil structural
information from spectroscopic data.

Gary Brudvig’s group compared the EPR-signals, attributable
to state S2 of the oxygen evolving centre, with EPR-signals of cer-
tain Fe4S4 proteins of known structure. Because of the similarity
of their ferro- and antiferromagnetic exchange couplings they ten-
tatively conceived a tetrameric Mn4O4-cluster in a cubane-like
arrangement as one possibility for PSII (Depaula et al., 1986).
Based thereupon they hypothesized a comprehensive reaction
scheme (Brudvig and Crabtree, 1986). A ‘naked’ Mn4O4-cluster
(the protein was not considered!) was proposed to cycle over
the five oxidation states S0 to S4, evolve oxygen during the transi-
tion S4→ S0, release protons with the known stoichiometric pat-
tern of 1:0:1:2, accommodate two water molecules to yield an
Mn4O6-cluster in an adamantane-like conformation, and

eventually to form the dioxygen bond (see Fig. 1 in Brudvig
and Crabtree (1986)). Among three possible sets for the oxidation
states of the four Mn ions the authors considered a very high-
valence (HV) state, namely Mn(IV)3Mn(V) in S4, as probable
(Brudvig and Crabtree, 1986).

Mel Klein started investigations of the state of manganese in
photosynthesis by X-ray absorption spectroscopy (XAS) (Kirby
et al., 1981a, 1981b), Ken Sauer’s group joined this field
(Goodin et al., 1984), and they went on together in Berkeley.
Using synchrotron radiation that was tuned to the K-edge of
manganese and calcium ions they studied the X-ray absorption
near edge structure (XANES), and the extended X-ray absorption
fine structure (EXAFS). The former gives information on valence
states, the latter yields the distance between the primarily excited
ion and its neighbours. A set of Mn–Mn distances was determined
(with very high (0.1 Å) precision) for the S1- and S2-states
(Yachandra et al., 1987a, 1987b). The most prominent Mn–Mn dis-
tances were two times 2.7 and one time 3.3 Å. Their K-edge showed
shifts that were indicative of Mn-oxidation during S0→ S1 and
S1→ S2, and much less so during the transition S2→ S3 (Roelofs
et al., 1996). Ligand centred as opposed to Mn-centred oxidation
was considered as a possibility (Messinger et al., 2001). The abso-
lute valence of Mn4 could then not be assigned unequivocally,
except for S2 with probable configuration of (III, IV, IV, IV)
(Roelofs et al., 1996; Iuzzolino et al., 1998; Schiller et al., 1998).

The results of the Berkeley group were presented in a series of
reviews (Yachandra et al., 1993, 1996). The Mn–Mn distance of
2.7 Å was attributed to di-μ-oxo-linked Mn–Mn and of 3.3 Å to
mono-μ-oxo-linked Mn–Mn, respectively, by comparison with
data on Mn-model complexes of known structure (e.g. Christou,
1989; Wieghardt, 1989). The Berkeley group proposed a
Mn4-model of two di-μ-oxo-linked Mn-dimers that are linked by
one mono-μ-oxo bridge (the dimer of dimers model) (Yachandra
et al., 1993, 1996). However, a number of other structures for the
four oxygen-linked Mn-ions were also compatible with the same
set of Mn–Mn distances. In an attempt to resolve the structural
ambiguity Holger Dau studied linear dichroism of X-ray absorption
in oriented membrane fragments (Schiller et al., 1998) (for further
dichroism studies see Yano et al. (2006)). The additional informa-
tion did not lead to an unequivocal structural model. The high pre-
cision of the Mn–Mn distances as determined by EXAFS (<0.1 Å)
has, however, served to gauge the correctness of structural models
by X-ray diffraction and computational chemistry.

The proximity of Ca to the Mn-ions was eventually established
(Latimer et al., 1995), and the distance between strontium (the
only functional substitute for calcium) and Mn was determined
by EXAFS (Cinco et al., 1998). Sr neighbours two Mn-ions at
the same distance, 3.5 Å. From there on the catalytic centre of
oxygen production has been conceived as a hetero-nuclear
Mn4Ca-cluster. It has been coined ‘oxygen evolving complex’,
in short the OEC.

Various approaches to elucidate the structure and valence of
the Mn4-cluster based on the multiline CW-EPR signal of state
S2 had produced largely different models (e.g. Ahrling and
Pace, 1995; Zheng and Dismukes, 1996) because of a highly
under-determined data set. Jeffrey Peloquin and David Britt
increased the number of observable parameters by pulsed EPR/
ENDOR (Peloquin and Britt, 2001). A trinuclear Mn3 with one
appended Mn (coined ‘dangler’) was better compatible with
their data than the Mn4-cubanoid that was previously suggested.
They noted that ‘each manganese has a unique coordination envi-
ronment’ and may serve ‘a specific mechanistic purpose’. Based
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on their EXAFS studies on the S0-state the Berkeley group consid-
ered a cluster with three di-μ-oxo-bridged Mn plus one outlier
Mn as a possibility (Robblee et al., 2002).

Tentative mechanistic models for catalysis

Several authors have speculated about the chemical mechanism of
water oxidation. Most of them focused on the metal ions with one
exception. Gerald Babcock emphasized an active role of Tyr161 of
D1 (‘Yz’), namely as hydrogen acceptor for bound ‘water’
(Hoganson and Babcock, 1997; Tommos and Babcock, 1998).
Following Lev Krishtalik (Krishtalik, 1989, 1990) they argued
that a neutral tyrosyl radical abstracts hydrogen from bound
water (or OH) because concerted transfer of H required less reor-
ganization energy than the sequential transfer of an electron and
proton. Babcock presented a detailed reaction scheme that was
based on Brudvig’s concept of a Mn4-cubanoid. The question
was whether or not tyrosine, when oxidized by P680+, was a neu-
tral radical. Michael Haumann in the author’s group investigated
electrostatic relaxation versus chemical production of protons
(Haumann and Junge, 1994) plus local electrochromism
(Haumann et al., 1997b) in the reaction cascade between P680,
Yz and the Mn4Ca-cluster. In intact PSII the oxidation of Yz

revealed strong local electrochromism and no proton release
into the bulk, as if the oxidation of Yz left a positive charge on
tyrosine or closely nearby. It has been proposed that the tyrosine-
proton is shifted to a neighbouring base, B, to which Yz is
hydrogen-bonded (Ahlbrink et al., 1998; Junge et al., 2002). B
was then identified as D1-His190 (Hays et al., 1998). The seques-
tration of the tyrosine-proton in its vicinity holds only in intact
PSII, it does not hold if smaller subunits of PSII or Ca are
removed (see (Ahlbrink et al., 1998; Junge et al., 2002). The prim-
ing reaction for water oxidation is then conceived as follows:
P680+YzHis→ P680Yz&HisH+.

Taken together it has implied that oxidized Yz can act as an elec-
tron but not as a hydrogen acceptor to the catalytic metal cluster.

Vincent Pecoraro and his coworkers had studied the reactivity
of synthetic manganese complexes. Based thereupon they pro-
posed a mechanistic model for photosynthetic water oxidation
(Pecoraro et al., 1998). ‘An essential feature of the model is the
nucleophilic attack by calcium-ligated hydroxide on an electro-
philic oxo group ligated to high-valent manganese to achieve
the critical 0–0 bond formation step.’

The involvement of Mn(V) = oxo had been previously dis-
cussed by Johannes Messinger based on studies on slow water
exchange (Messinger et al., 1995). The proposed pivotal role of
Mn(V) = oxo for the catalytic mechanism has been taken up by
others, and it is highly debated till today (see below).

By density functional theory (DFT) Per Siegbahn and Robert
Crabtree scrutinized possible mechanisms for the formation of
an O–O bond (Siegbahn and Crabtree, 1999) in line with
Babcock’s and Pecoraro’s proposals. By calculations of energy
surfaces they found that hydrogen abstraction from Mn–OH
by a neutral tyrosine radical probably could not directly produce
a reactive, manganese bound oxyl. As a way out they proposed
an indirect pathway involving Ca that is chelated to the
manganese.

Crystal structures of PSII with the Mn4CaO5-cluster

Starting from his PhD-work in Göttingen (right after World War
II) the mechanism of water oxidation to yield dioxygen has

remained Horst Witt’s career-long preoccupation, his ‘spröde
Geliebte’ (prudish beloved, see Junge and Rutherford (2007)).
But it was only after retirement that he focused on crystallization
of PSII, using a PSII complex from the thermophilic cyanobacte-
rium Synechococcus sp. (Rögner et al., 1987). Witt joined forces
with the crystallographer Wolfram Saenger, and, on their way
to the structure of PSII, the Berlin group arrived first at crystals
and a structural model of PSI ‘of water splitting photosynthesis’
(Witt et al., 1988). (Three years later it was improved to a resolu-
tion of 2.5 Å (Jordan et al., 2001).) Thereafter Athina Zouni char-
acterized PSII-crystals capable of water oxidation (Zouni et al.,
2000). The long desired first structural model of PSII was pre-
sented (Zouni et al., 2001). At a resolution of 3.8 Å it revealed
a dimeric structure of PSII, the relative positions of its large sub-
units, the transmembrane helices, the position and orientation of
cofactors (chlorophylls, Yz, quinones, cytochromes), and the posi-
tion and shape of Mn4Ca as a whole, however without detail on
the mutual arrangement of the metal ions.

Jian-Ren Shen and Nobuto Kamiya followed very closely. They
characterized oxygen evolving crystals of PSII (Shen and Kamiya,
2000) and determined their structure at 3.7 Å resolution (Kamiya
and Shen, 2003). The results were much alike those of the Berlin
group with new features on ligands to the metal-cluster, and cer-
tain carotenoids. The inner structure of the metal-cluster was
again presented as pear-shaped and without detail.

James Barber in London has not less been determined than the
former two groups to solve the crystal structure of PSII (see
Andersson (2005)). In 1998, in close collaboration with Werner
Kühlbrandt and by electron crystallography of 2D crystals they
derived a structural model of a PSII-subcomplex that was capable
of photochemical electron transport but not of water oxidation.
The location of four subunits and a total of 23 transmembrane
helices was resolved at 8 Å (Rhee et al., 1998). The structural sim-
ilarity between the reaction centre of purple bacteria, PSI and PSII
has been evident (see their Fig. 5). James Barber then turned to
X-ray crystallography in collaboration with So Iwata, and they
obtained a fully refined structural model of PSII at 3.5 Å resolu-
tion (Ferreira et al., 2004). Over 5000 side chains of the hetero-
dimeric protein complex were assigned.

Most important has been their model for the metal-cluster (see
Fig. 2). In conceiving this far sighted structural model the authors
relied on their own diffraction data, including the anomalous dif-
fraction aiming at Mn (X-ray wavelength 1.89 Å) and Ca (2.25 Å),
the Mn–Mn and Mn–Ca distances from EXAFS-studies of the
Berkeley group (Yachandra et al., 1987b), knowledge on μ-oxo-
linked Mn-model-clusters as previously discussed (Brudvig and
Crabtree, 1989), and the proposed Mn3 +Mn(dangler)-structure
(Peloquin and Britt, 2001).

The Barber-model of the metal cluster had three Mn plus one
Ca forming a cubanoid and the fourth Mn dangling out. The ions
were bridged by four oxygen atoms and ligated by four water mol-
ecules (though not clearly resolved). A bicarbonate was postulated
to bridge the Ca-ion and the dangling Mn. Four protein residues
ligated the Mn4CaO4-cluster, with Yz = D1-Tyr161 and its hydro-
gen-bonded partner, D1-His190, in close vicinity to the former. In
essence, this model has set the path until today. One year later the
Berlin group presented a model at slightly higher resolution of
3 Å, where all carboxylate residues were now bi-dentate bridging.
Even the one that was terminally bound to one manganese in
Barber’s model was now bridging two metals (Loll et al., 2005).
Again the resolution was not sufficient to resolve bridging oxygen
atoms and water.
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Johannes Messinger reviewed the status of agreements and
diverging views up to 2004. He discussed two possible mecha-
nisms for O–O bond formation, namely involving the dangler
Mn and one Ca-bound water on the one hand, and involving a
bridging oxygen and a dangler-bound water (Messinger, 2004).

Crystals exposed to a CW-X-ray beam from a synchrotron
undergo radiation damage. By X-ray spectroscopy Holger Dau
had detected dose-dependent Mn-reduction in PSII (Dau et al.,
1997). The larger Mn–Mn bond length in Barber’s crystal struc-
ture as compared with the one inferred from EXAFS (Dau
et al., 2004) raised serious doubt on the valence-state of the
Mn4Ca-cluster in Barber’s model. The Berlin group joined forces
with the Berkeley group and they clearly demonstrated that X-ray

exposure (doses by order of magnitude lower than causing loss of
diffractivity) reduced Mn4 from the expected valence of state S1
(III,III,IV,IV) to (II,II,II,II) (Yano et al., 2005). It explained why
the Mn–Mn distances of the structural model were larger than
very precisely determined by EXAFS. At the same time the
valence-set of the four Mn-ions was determined by 55Mn-pulse-
NMR in Wolfgang Lubitz’ lab. It was (III,III,III,IV) in S0 and
(III,IV,IV,IV) in S2 (Kulik et al., 2005).

Soon thereafter Per Siegbahn took Barber’s arrangement of the
metals and their ligands (with modifications by the Berlin group)
as the basis for modelling Mn4CaOx-clusters in silico (Siegbahn,
2006). By DFT and energy minimization a particular configura-
tion of Mn4CaO5 was selected to represent the HV state S4
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Fig. 2. Left: The first structural model of the catalytic centre (Ferreira et al., 2004). Right: Schematic representation of the Mn4CaO5(H2O)4-complex with the num-
bering as used after the first model at high-resolution (Umena et al., 2011).
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Fig. 3. Tentative scheme for the cyclic stepping of the catalytic metal cluster over Kok’s states S0→ S1→ S2→ S3→ S4 and the formation of the dioxygen bond
(Krewald et al., 2016).
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from where the O–O bond is formed. The Mn–Mn bond lengths
in the energy minimized structure were shorter than in Barber’s.
In this respect Siegbahn’s modelling was predictive for radiation
damage and not only post mortem descriptive as common in com-
putational biochemistry/biophysics.

It was not astounding that, for a while, Barber’s structure of the
metal cluster was met with reservations, because it has been all
but trivial, that the metal and ligand positions in PSII are the
same if the valence of Mn4 is (III,III,IV,IV), as supposed for S1,
or (II,II,II,II), as after radiation damage.

Subsequent work on the atomic structure has been aimed at
(a) minimization of radiation damage, (b) improved spatial reso-
lution, (c) selective characterization of the five functional states
S0 to S4 and (d) time resolution of structural transitions between
them. The latter necessitates X-ray diffraction at room temperature.

The first high-resolution structure of PSII at 1.9 Å was
published by Jian-Ren Shen and Nobuo Kamiya (Umena et al.,
2011). Barber’s cubanoid for Mn3Ca with the dangling
Mn (Ferreira et al., 2004), and the ligand structure of the Berlin
group (Loll et al., 2005) were corroborated in essence. For the
first time, the bridging oxygen atoms and four water molecules
were clearly resolved, and former Mn4CaO4 became
Mn4CaO5(H2O)4, as schematically illustrated in Fig. 2. Barber’s
numbering of the metal ions and oxygen atoms has been changed
accordingly. The position of the dangler-Mn relative to the
cubane was corrected by 3 Å, and Asp 170 was now a bidentate
ligand (bridging Mn4 and Ca) and not monodentate, as before.
This structural model was obtained by continuous synchrotron
radiation (CW-XRD), and at cryogenic temperature. The Mn–
Mn distances were still slightly longer than in both, EXAFS exper-
iments and DFT calculations, and hence still indicative of some
radiation damage.

A damage-free structure was desirable. X-ray diffraction with
ultra-short pulses (typ. duration, <50 fs) of a free electron laser
(XFEL) seemed to offer a way out. The pioneering study was pub-
lished in 2012 by the joined groups of Berlin (i.a. Athina Zouni),
Berkeley (i.a. Jan Kern, Junko Yano, Vittal Yachandra) and Umeå
(Johannes Messinger). Very many stochastically oriented micro-
crystals of PSII were each exposed to a single X-ray shot to ‘dif-
fract before destruction’ (Kern et al., 2012). It followed a series
of such XFEL studies (e.g. Kern et al., 2013, 2014; Hellmich
et al., 2014; Kupitz et al., 2014) carried out at room temperature
and aiming at improved resolution.

Shen and his colleagues also conducted XFEL experiments. In
contrast to the former group they used large crystals with
volume-per-volume exposure at cryogenic temperature. In 2015
they presented a ‘damage-free’ structural model at a resolution
of 1.95 Å (Suga et al., 2015). The Mn–Mn distances were shorter
than previously obtained by conventional CW-XRD (Ferreira
et al., 2004; Umena et al., 2011), and they were better compatible
with those from EXFAS and DFT (for the remaining slight differ-
ence, see Fig. 1 in Siegbahn (2013b)). The 1.95 Å-structure has
become the standard for the following discussions.

A long hedged dream of inorganic chemists came true when
Chunxi Zhang and his colleagues synthesized a biomimetic ana-
logue of nature’s Mn4Ca-cluster (Zhang et al., 2015).

The obvious challenge was now to determine the damage-free
structure of the catalytic centre at room temperature, in its differ-
ent oxidation states (S0, …, S4), and, if possible, time resolved.

In 2016 the Berkeley–Berlin team published a XFEL-study on
structural differences between states S1 and S3 of the metal cluster,
as function of the temperature, and with and without ammonia

bound (Young et al., 2016). With ammonia the authors mapped
those water binding sites in the metal-cluster that are not involved
in the formation of the O–O bond. While temperature affected
some positions of transmembrane α-helices and redox-cofactors,
the Mn4CaO5-cluster, proper, was practically invariant to temper-
ature. At a resolution of 2.25 Å the authors did not detect differ-
ences between the dark state (S1) and the ‘two flashes advanced’
state (mainly S3) (Young et al., 2016).

Photosystem II with the oxygen evolving complex (AC)

Mechanistic models for O–O bond formation

Adopting a chemical mechanism that had been proposed by
V. Pecoraro and his colleagues (Pecoraro et al., 1998) James
Barber speculated that the dioxygen-bond is formed by nucleo-
philic attack of a water ligand to the Ca-ion on a highly electro-
philic oxo supposedly bound to the dangler-Mn(V) (Ferreira
et al., 2004; Iwata and Barber, 2004). Barber has favoured this
concept until today (Barber, 2016, 2017). His view is in line
with earlier computational studies by P. Siegbahn (Siegbahn and
Crabtree, 1999; Siegbahn, 2000), and it has been shared recently
by others (McEvoy et al., 2005; Sproviero et al., 2006, 2008;
Askerka et al., 2017).

After the first structural model of the metal-cluster had been
published Per Siegbahn investigated by DFT the energy profile
of various mechanistic models for the formation of the O–O
bond. Calculations of the energy demand for an O–O-bonded
intermediate in the Mn4CaO5-structure led him to reject the
nucleophilic attack mechanism. He has since then proposed a
radical attack mechanism involving a new bridging oxygen
(O5) within an open cubanoid (coined oxyl-oxo-mechanism)
(Siegbahn, 2006) that was not included in Barber’s structural
model. O5 resulted from ‘predictive computational chemistry’,
and it was only later observed in diffraction experiments at higher
resolution. Siegbahn has extended this work later on (Siegbahn,
2006, 2008a, 2017; Siegbahn and Blomberg, 2014).

Yu Guo and his coworkers embarked on similar DFT calcula-
tions and likewise favoured an oxo-oxyl mechanism involving the
same bridging oxygen (O5) in an open cubanoid (Guo et al.,
2017). On first inspection Guo’s results are in line with
Siegbahn’s, however a closer look reveals that their calculated
energy profile for the last transition (S3→ S0) violates the
experimentally established fact that oxygen liberation and
Yz
+-reduction are both kinetically enslaved by the same rate limit-

ing step. In his calculated energy profile these two reactions are
separated by an energy notch, 12 kcal/mol deep (see their
Fig. 4; Guo et al., 2017). Siegbahn’s calculated energy profile on
the other hand is compatible with the kinetic data.

The proponents of the leading concepts for the formation of
the O–O bond, nucleophilic attack versus oxo-oxyl, have pre-
sented their diverging views in series of publications starting
from 2004 (Ferreira et al., 2004) and 2006 (Siegbahn, 2006)
until today. While James Barber most recently argued in favour
of nucleophilic attack by analogy with the known mechanism of
carbon dioxide dehydrogenase (Barber, 2017), Per Siegbahn
(Siegbahn, 2017) repeated his previous (Siegbahn, 2006) exclusion
of nucleophilic attack on energetic grounds.

In addition to the above two concepts for the formation of the
O–O bonds several modified or even alternative mechanisms have
been proposed (see e.g. Messinger, 2000; Gao et al., 2009;
Yamanaka et al., 2011; Saito et al., 2012; Cox and Messinger, 2013).
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Experimental tests of proposed mechanisms

The light driven stepping over the intermediate states of the
‘charge accumulator’ (Mn4CaO5) has been kinetically well charac-
terized (for a comprehensive review, see Dau et al. (2012)). The
eventually fourfold oxidized YzMn4Ca-entity reacts with two mol-
ecules of water (-derivatives) which involves the transfer of four
electrons. The terminal four-electron-cascade is kinetically
enslaved by a bottle neck of approximately 1 ms duration.
Characterizing the short-lived intermediates is difficult if not
impossible. The formation of a peroxide intermediate in the pen-
ultimate state S3 has been in focus.

The valence of the four manganese ions in states Si (i = 0–4)
A first stronghold for the assignment of oxidation states to the
four Mn-atoms has been the EPR-multiline EPR-signal of the
S2-state. It has been attributed to the interaction between Mn
(III) and Mn(IV) (Dismukes and Siderer, 1981). Two valence con-
figurations of the four Mn-ions are compatible with this notion,
namely Mn(III)3Mn(IV) and Mn(III)Mn(IV)3 (de Paula and
Brudvig, 1985). These assignments have been extended into two
schemes for the Si-series which are usually referred to as low-
valence (LV) and HV models. An enormous amount of work
by different techniques had been devoted to discriminate between
these models, for a while without reaching consent (reviewed in
Krewald et al. (2015)). The comparison of NEXAFS-data with
DFT-calculations supported the HV-model, although a few com-
plications seemed to prevent an unequivocal attribution (Brena
et al., 2012). Related to the above controversy has been the one
over ligand-centred versus Mn-centred oxidation in the transition
S2→ S3. The former was advocated in Yachandra et al. (1996) and
Messinger et al. (2001) and the latter in Iuzzolino et al., 1998; Dau
et al., 2003; Siegbahn, 2009; Brena et al., 2012. 55Mn-ENDOR
studies on states S0 and S2 (Kulik et al., 2005) and XAS-studies
on S2 and S3 (Dau et al., 2003) have established the HV concept
for the four manganese ions, namely, S0→ S1→ S2→ S3 = (III,III,
III,IV)→ (III,III,IV,IV)→ (III,IV,IV,IV)→ (IV,IV,IV,IV).

The oxidation of manganese during S2→ S3 and the existence
of a Mn4(IV)-state has been corroborated by X-ray emission spec-
troscopy (Zaharieva et al., 2016a; Schuth et al., 2018).

Two lines of computational studies have agreed on that the S2-state
is interconvertible between two sub-states. In one state, coined S2

B, the
only trivalent ion is Mn4(III), the dangler outside of the cubane. In
the other state, coined S2

A, it is Mn1(III) within the cubane. Both
these studies agreed in that only S2

B can proceed to S3 owing to the
presence of a titratable ligand (Bovi et al., 2013; Retegan et al.,
2016). While S2

A is more stable than S2
B the oxidation of Yz inverts

this situation such that S2
B passes by proton-coupled electron transfer

into state S3 (Mn(IV)4) (Narzi et al., 2014).
Krewald et al. cast the available data, including their own on

hyperfine coupling constants, into one consistent theoretical
framework (Krewald et al., 2015). They found that the most stable
states, the open cubane structure of S2 and the closed cubane of
S3, correspond to structures proposed earlier (based on DFT)
by Siegbahn (Siegbahn, 2013a). In contrast to speculation in the
literature their simulations yielded no evidence for ligand centred
oxidation between S2 and S3. And they showed that only the HV-
model complies with the data but not the LV-model (Krewald
et al., 2015). In light of these results, state S3 is to be conceived
as YzMn4(IV) or Yz

+°Mn3(IV)Mn(III) (Cox et al., 2014; Retegan
et al., 2014), and state S4 asYz

+°Mn4(IV). The latter initiates the
formation of the O–O bond.

The entry of water into the reaction cycle
The points of entry of solvent water into the reaction sequence of
oxygen evolution were at first characterized by mass spectroscopy
(Messinger et al., 1995; Hillier et al., 1998). The location of the
binding sites was then unknown. The μ-oxo-bridges were initially
considered as too strong for solvent exchange and catalytic rele-
vance. Hydrogen exchange studies and 17O-NMR spectroscopy
has recently demonstrated that at least one μ-oxo bridge in the
metal cluster, either O4 or O5, is solvent exchangeable
(Rapatskiy et al., 2012). The latter μ-oxo might participate in
O–O bond formation as previously postulated by Siegbahn
(Siegbahn, 2006).

Dimitrios Pantazis and colleagues (Retegan et al., 2016) in
Wolfgang Lubitz’ lab in Mülheim discussed water exchange in
the light of experiments on the Mn-coordination number in the
S3 state (Haumann et al., 2005) and of recent work on water
exchange, when progressing through the Si states (Suzuki et al.,
2008). One water molecule binds after oxygen release. It has
been implied to form the di-μ-oxo bridge in the S0-state
(Krewald et al., 2015) and a fluxional bridge in the S2-state
(Bovi et al., 2013). The second water binds in the S2→ S3 transi-
tion. It is probably not the reacting water in the next turnover
(Suzuki et al., 2008; Cox and Messinger, 2013; Nilsson et al.,
2014a). Pantazis proposed that W2 on Mn4, it pivots close to
O5, might act as reaction partner in the formation of the O–O
bond (Retegan et al., 2016). This view is however at odds with
ammonia mapping of reactive water by the Berlin–Berkeley
team which has let them to exclude W2 in this role (Young
et al., 2016).

Christopher Kim and Richard Debus investigated the vibra-
tional modes of bound water by FTIR-spectroscopy (Kim and
Debus, 2017). The D–O–D bending-mode of one water molecule
is altered upon functional substitution of Sr for Ca. This particu-
lar hydrogen-bonded water molecule is eliminated during the
transition S2→ S3. The authors proposed that this water molecule,
probably W3, is deprotonated and moves to a position close to O5
as partner for O–O bond formation in the next transition (S3→
S4–S0). During S2→ S3 the vacant water position on Ca is refilled
by the incoming substrate water (Kim and Debus, 2017). Their
view is compatible with the reorganization of hydrogen bonds
as inferred from a large H/D-kinetic isotope effect on the reduc-
tion of Yz& as monitored by UV- (Haumann et al., 1997a), X-ray-
(Zaharieva et al., 2016b) and FTIR-spectroscopy (Sakamoto et al.,
2017). Nicholas Cox and colleagues (Krewald et al., 2016) cast the
available spectroscopic evidence into a spin-geared reaction
scheme where the O–O bond is formed within the cubane.
Their scheme is illustrated in Fig. 3.

The above spectroscopic results from Wolfgang Lubitz lab
and other laboratories are in line with P. Siegbahn’s oxyl-oxo-
mechanism (Siegbahn, 2006, 2017) and at odds with J. Barber’s
nucleophilic attack mechanism (Ferreira et al., 2004; Barber,
2017). They qualify alternative computational models (Kusunoki,
2007, 2011), in particular those based on LV of the Mn-cluster
(Sproviero et al., 2008; Gatt et al., 2011; Petrie et al., 2012; Li
et al., 2013). The challenge has been back to structural biology.

Structural evidence for/against proposed mechanisms of O–O
bond formation
In 2016 the Berkeley–Berlin team published a XFEL-study on
structural differences between states S1 and S3 of the metal cluster
at room temperature (Young et al., 2016). At a resolution of
2.25 Å no difference in electron density was detected between
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the dark state (S1) and the ‘two flashes advanced’ state (mainly
S3), as mentioned.

In 2017 Shen and coworkers in Japan reported structural dif-
ferences of the metal-cluster between states S1 and S3 up to a res-
olution of 2.1 Å (Suga et al., 2017). Their study was carried out at
room temperature and under excitation with 10 fs pulses of a free
electron laser. They found an ‘apparent positive peak’ in the dif-
ference Fourier map close to oxygen atom O5 which they inter-
preted as new oxygen, coined O6. O5 and O6 were taken as
candidates for the formation of the O–O bond (Suga et al.,
2017) in line with Siegbahn’s computational results (Siegbahn,
2006, 2008b, 2009). The authors discussed that Glu189, the
only mono-dentate ligand to the cluster, had to move away
from the cubane to accommodate O6.

When taken at face value this result could put an end to the
major controversy over the mechanism of the O–O bond forma-
tion (nucleophilic attack versus oxyl-oxo).

At present, however, several features call for scrutiny: (a) the
‘apparent positive peak’ in Shen’s difference map (interpreted as
O6) is hardly elevated over noise and, at the given resolution,
superimposed by electron density of Mn. (b) It is not yet clear
to what extent it depends on particular software for the evaluation
of raw data. (c) The purity of the dark state (100% S1?) and of the
‘2-flash-advanced state’ (45% S3 in Shen’s implies 55% S2!) has
been difficult to assess in crystals of PSII. (d) Spectroscopic evi-
dence disfavours the presence of a peroxide intermediate in
state S3. (e) The supposedly ‘moving’ residue Glu189 has been
point mutated into Arg, Lys and Gln without influence on the
rates of various electron transfer reactions at the donor side of
PSII (Clausen et al., 2001).

The Berlin–Berkeley group has advanced the search technique
for intermediates of the O–O bond by combining serial femtosec-
ond X-ray crystallography with simultaneous X-ray spectroscopy
under multi-flash visible laser excitation (Kern et al., 2013). In
principle, this technique allows time resolution of structural tran-
sitions by variation of the time delays between the X-ray and the
visible flashes. The major challenge is to obtain the necessary spa-
tial resolution (<2 Å) to reveal the expected displacement of water
(oxygen) molecules in 100 µs during the transition from S2
towards S3 and onwards via ‘S4’ to S0 in a millisecond. Recently,
this team has reported the structure of all states of Kok’s cycle
at 2.04–2.08 Å resolution including two transient states during
S2→ S3 at 150 and 400 µs after excitation by a flash of visible
light (Kern et al., 2018). Their data exclude the formation of a
peroxide intermediate already in state S3. In S3 they found the
binding of a new ‘Ox’ (a water derivative) in a position between
Mn1 and Ca. In the next step, S3→ S4–S0 it could either form
an O–O bond with O5 or replace O5 after formation of such a
bond between O5 and another Ox. These results are in perfect
agreement with the above cited results obtained by X-ray and
magnetic resonance spectroscopy. There is no evidence that a per-
oxide intermediate is already formed in state S3. But it is expected
that one intra-cubanoid oxo-group, namely O5, is involved in the
formation of the O–O bond in the next step, S3→ S4–S0.

Perspective for a rigorous resolution of the molecular
mechanism

The rigorous resolution (in space and time) of the four one-
electron steps and the eventual four-electron reaction cascade of
this pivotal reaction for life on earth is complicated by two fea-
tures: (a) the great stability of the (Mn4CaO5cage)-structure and

(b) the seeming kinetic enslaving of six partial reactions by one
particular step.

(a) The Mn4CaO5-cluster is very stable, and its expected struc-
tural changes during the terminal reaction cascade are probably
subtle. Even gross valence changes of Mn like those caused by
radiation damage in CW-X-ray diffraction (Dau et al., 1997;
Yano et al., 2005) increase the bond length between metal ions
only by small amount (see Siegbahn (2009)). This is why mech-
anistic insight can hardly be expected from tracking the motion
of the metal ions proper.

As already mentioned, the effects of radiation damage have
been minimized by either extremely low dose in conventional syn-
chrotron X-ray diffraction (Tanaka et al., 2017) and by femtosec-
ond irradiation in XFEL-diffraction experiments (Kern et al.,
2014; Tran et al., 2014; Suga et al., 2015). Another type of radia-
tion damage, namely a ‘coulomb-explosion’ of the metal cluster in
some 10 fs has only recently been considered. MD-simulations
have revealed that it is minimized if the X-ray pulse length is
shorter than 10 fs (Amin et al., 2017, 2016).

It came as a surprise that not only the metal-cluster is
extremely stable but its protein cage as well. The Berlin group
deleted the metal-cluster from PSII, and they found the protein
cage very little altered, as if waiting for the insertion of di-μ-oxo-
bridged pairs of manganese (Zhang et al., 2017).

(b) The key to fully understand the mechanism of water oxida-
tion are the trajectories of water, hydroxyl, oxygen, proton and
electron. The motion of the former three might be tracked in
the near future by time-resolved XFEL-crystallography at <2 Å
resolution. Spatial tracking of protons (and electrons) is however
not yet in sight. Here one is restricted to kinetic evidence based on
spectroscopic data. Here, the kinetic enslaving of six partial reac-
tions by one particular step represents a major challenge as illus-
trated in Fig. 4.

If the valence of Mn4 in state S2 is taken as a reference, namely
(IV, IV, IV, III), the penultimate state before oxygen release pos-
sibly is: S3 = [Mn(IV)4CaO5(H2O)4Ligands]

+. The next photo-
excitation creates the sequence of events that is illustrated in
Fig. 4. Oxygen is released plus two protons and one water mole-
cule is taken up. The release of two protons is kinetically bipartite,
a first step in the time range of 100 µs is followed by a slower step
at 1 ms (Förster et al., 1981). The fast release of one proton seems
to be the priming event for the subsequent cascade of six reactions
which are kinetically enslaved by one and the same bottle neck of
1 ms half-duration, namely (1) the transfer of one electron to
Yz
°HisH+, (2) the reduction of three manganese ions, (3) the

release of a second proton, (4) the release of di-oxygen and (5)
the uptake of one molecule of water. The exact sequence of
these events is subject to ongoing research. Michael Haumann
and Holger Dau ventured into time-resolved calorimetry using
photo-thermal beam deflection (Krivanek et al., 2008; Klauss
et al., 2009). They obtained a wealth of signal transients that
were interpreted to show the release of one proton first, oxygen
release and water intake second and the release of another proton
third (see Fig. 8 in Klauss et al. (2015)). It seems worthwhile to
take up such studies with certain mutant-PSII were oxygen release
is dramatically slowed down (Hundelt et al., 1998; Clausen et al.,
2004; Nilsson et al., 2014b).

Energetics of oxygen production by PSII

Aiming at the stabilization of transient intermediates of the termi-
nal reaction cascade PSII was exposed to high oxygen pressure
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(Clausen and Junge, 2004). Certain UV-absorption transients that
clearly showed a phase of ∼1 ms half-time during S3→ S4–S0 were
monitored. These transients had been previously attributed to the
reduction of the manganese cluster (Dekker et al., 1984). If the
oxygen pressure was increased 100-fold over atmospheric this
phase was virtually eliminated. Half-inhibition was reached at
≈10-fold increase. It suggested a rather low driving force for pho-
tosynthetic oxygen production, implying ‘little leeway for photo-
synthetic organisms to push the atmospheric oxygen
concentration much above the present level’ (Clausen and
Junge, 2004) (for possible ecological and geochemical impact
see Raven and Larkum (2007)). At first this observation seemed
to be corroborated by another technique, delayed chlorophyll-
luminescence (Clausen et al., 2005b). Later however, no stalling
effect of increased oxygen pressure was detected by (a) time-
resolved X-ray absorption aiming at the K-edge of Mn
(Haumann et al., 2008), (b) chlorophyll-fluorescence (Kolling
et al., 2009) and (c) direct detection by membrane-inlet mass
spectroscopy of 18O2 produced from H2

18O against a background
of pressurized 16O2 (Shevela et al., 2011). In the latter experiments
the oxygen pressure was raised up to 20 bar without any indica-
tion for stalling of dioxygen liberation. It implies that the driving
force is at least 200 meV. Recently this number was driven up by
another approach. In one cyanobacterial mutant-PSII the S0-state
is stabilized for days. Johannes Messinger and his colleagues incu-
bated this mutant for up to 3 days in H2

16O and 18O2 without
detecting the formation of any amount of 16,18O2 (Nilsson
et al., 2016). They concluded that the driving force for dioxygen
release during S3→ S4–S0 must be greater than 400 meV. They
understood this large driving force in terms of Lev Krishtalik’s
pioneering discussion of the energetics of photosynthetic oxygen
evolution in terms of thermodynamic principles (Krishtalik, 1989,
1990). Jérome Lavergne in Nilsson et al. (2016) attributed the
experimentally established high driving force to the large entropic
effect of dilution of bound oxygen into the solution (see free
energy profile in Fig. 6 of Nilsson et al. (2016)). Their conclusion
was that the protein has no grip on this ‘extra enzyme’ contribu-
tion to the driving force.

In oxygenic photosynthesis the entropy of dilution favours the
release of freshly formed and still bound dioxygen. What about
cell respiration where cytochrome oxidase has to overcome this
huge entropic barrier?

The ‘equilibrium constant’ for oxygen in cytochrome oxidase
was studied by Marten Wikström’s group (Krab et al., 2011).

The authors determined the apparent Km(O2) for steady turnover
of the enzyme, at neutral pH and in the absence of protonmotive
force, Km(O2) = 25 nM (see their Fig. 4A). The free energy of oxy-
gen binding from O2-saturated water is in the order of −450 mV,
very strong indeed, when considering the more than the +300 mV
of Krishtalik’s entropic contribution to oxygen dilution (see dis-
cussion in Nilsson et al. (2014b)).

Oxygenic photosynthesis and a sustainable future of
mankind

Oxygenic photosynthesis has produced the oxygen we breathe
and the biomass serving as food, feed, fibre and fuel, as men-
tioned. Its driving force is sunlight. The mean power of sunlight
at the surface of earth is huge, 124 × 1015 W = 124 PW. Only a
very small fraction thereof is captured by photosynthetic organ-
isms, 89 × 1012 W = 89 TW, about half and half on land and in
the sea (Field et al., 1998; Falkowski et al., 2000). The low propor-
tion of solar energy capture is partially owed to unfavourable cli-
mate, substrate, seasons and the day–night cycle. Another loss of
energy capture is intrinsic to the physico-chemical mechanism of
photosynthesis, as described above. The solar energy conversion
efficiency of photosynthesis is limited even under the most
favourable conditions of agriculture, and even more so, if one
aims at processed products like biofuels (see Fig. 5).

In the range of microseconds after absorption of a quantum of
light the efficiency reaches up to 20% if related to the solar spec-
trum at the sea level (right scale in Fig. 5). It is about 80% under
excitation with red light (see right scale in Fig. 5). These figures
refer to a thin canopy (for a thick canopy, see Dau and
Zaharieva (2009)). Therewith the efficiency matches the one of
photovoltaic cells (Blankenship et al., 2011). The initial drop (to
20%) is mainly caused by (a) limited use of the full solar spectrum
(∼50%) and (b) internal energy conversion (‘blue→ red’) within
chlorophyll. In the test tube and within the time range of
100 ms to yield NADPH the efficiency drops by another factor
of two. William Rutherford has coined this drop as ‘sacrificing
energy efficiency for directionality’ (Rutherford et al., 2012). In
other words, wasteful back-reactions are overcome by high
speed of the forward reaction which requires an energy drop.
On the physiological time scale (h) the efficiency drops further
from the best vegetative month of the year to the average over a
full year. The maximum yearly averaged efficiency at the given
level of atmospheric CO2 (380 ppm in 2010) has been estimated
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Fig. 4. The terminal reaction cascade of oxygen formation (see the text).
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Fig. 5. The efficiency of solar energy conversion by oxygenic photosynthesis as a
function of time (see the text).
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by Don Ort’s group as 4.6% for C3- and 6% for C4-plants (Zhu
et al., 2008). The efficiency of crops in the field is mostly lower.
Take Brazil’s large scale energy farming as an example. In 2010
the area specific yield of sugarcane was 80 tdwt ha

−1 yr−1. It
implies a solar energy conversion efficiency of about 2%. The con-
secutive conversion of sugarcane into bio-ethanol yielded 6300 l
ha−1 yr−1 EthOH, equivalent of an overall energy efficiency of
about 0.2%. Slops and slurry were utilized in the process, and the
fossil energy input was not counted in this estimate. Various
well-to-wheels analyses for biofuel production in the USA and in
Europe (e.g. by the JRC in 2012: ISBN 978-9279-21395-3, ISSN
1831-9424, EUR 24952 EN, doi:10.2788/79018 and Torchio and
Santarelli, 2010; Wang et al., 2012; Orsi et al., 2016) came to the
same conclusion. The overall energy yield of biofuel production
is at best 10% of the energy content of the biomass if not being neg-
ative (i.e. requiring higher fossil fuel input than biofuel output).
Energy farming for biofuels is a questionable option, at least for
densely populated countries that cannot waste arable and/or eco-
logically valuable land.

In a recent meta-study Ron Milo and his colleagues reviewed
the distribution over taxa of the biomass on earth (Bar-On
et al., 2018). Figure 6 (left) shows their result. In terms of fixed
carbon, plants (83%) dominate over bacteria (13%) and animals
(0.4%). Homo sapiens account for less than 0.01% of total. (By
the way, the total amount of fixed carbon in sapiens is by one
order of magnitude greater than that of all wild mammals taken
together.) Confrontation of the biomass distribution over taxa
(Fig. 6, left) with the energy provision by photosynthesis
(Fig. 6, right, green) and the global primary energy consumption
of mankind (Fig. 6, right, brown), shows that mankind, summed
over all nations, uses 22% of what is provided by photosynthesis.
Mankind’s metabolic energy intake (Fig. 6, right, blue) is much
less than the global energy consumption by technical civilization
(Fig. 6, right, brown). It is noteworthy that the energy consump-
tion per capita in industrialized countries like Japan and Germany
is twice the global average, and in the USA it is more than four

times greater. In other words, if the present global population
cared to live in the style of USA citizens, they had to use the
whole biomass production at almost 100% energy conversion effi-
ciency, an absurd scenario.

Accordingly the engineering of plants and algae for higher effi-
ciency (see e.g. Ort et al. (2015); South et al. (2018)) should be
directed towards improved supply of food, feed, fibre and plat-
form chemicals rather than of fuel. Having reached the
Anthropocene, mankind cannot rely on oxygenic photosynthesis
to satisfy its energy needs.
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